KINEMATICS | | KIPS | MULTIPLE CI | HOICE QUESTIO | NS | | |--|---------------------|------------------------|--------------------------|------------------------------|--| | 1. | SI unit of speed is | 3: | | | | | | a) ms ⁻¹ | b) mh ^{-l} | c) kms ⁻¹ | All of these | | | 2. | The rate of displa | cement with respect | to body is known as: | | | | | a) Distance | b) Speed | c) Velocity | d) Acceleration | | | 3. | Study of motion of | of the bodies is known | ı as: | | | | | a) Heat | b) Light | c) Atomic physics | d) Mechanics | | | 4. | Study of motion v | without the reference | of force and motion is | called: | | | | a) Kinematics | b) Dynamics | c) Heat | d) Motion | | | 5. | The quantity whi | ch can be described | by a number, with suits | able unit only is called: | | | | a) Vector | b) Scalar | c) Speed | d) Acceleration | | | 5. | SI unit of acceler | ation is: | | | | | • | sal ms-1 | b) kmh ⁻¹ | c) kms ⁻² | d) ms ⁻² | | | 7. If a body does not change its position with respect to some observer then it will | | | | | | | • | a state of: | | | | | | | a) Rest | b) Motion | Uniform motion | | | | } . | If a body changes | its position with resp | ect to some observer th | en it will be in a state of: | | | , i | a) Rest | Notion . | c) Uniform motion | n d) Relative motion | | | | In equations of m | otion, quantities in | the direction of initial | velocity are taken as: | | | • | a) Uniform | b) Variable | c) Positive | d) Negative | | | _ | | 00 Datilo | s: | | | | 0. | Rest and motion | | c) Variable | Relative | | | | a) Absolute | b) Constant | | | | | 1. | Such a type of m | otion in which every | y particle of a body na | as exactly the same motion | | | | is known as: | | | 0.1 | | | | a) Translatory | by Vibratory | c) Rotatory | d) none of these | | | 2. | When each point | of a body moves a | round a fixed point | or axis then the motion of | | | | the body is know | | | | | | | a) Translatory | b) Vibratory | c) Rotatory | none of these | | | 3. | When a body mo | ves to and fro abou | t a point and repeats | its motion again and again | | | - | about the same n | oint then this motion | on is known as: | | | | | a) Translatory | | c) Rotatory | d) none of these | | | | S, Hansiatory | 0, 11010101 | , | · · | | | UNIT | Γ-2 | | | | |----------|--|---|----------------------------------|---| | <u> </u> | v m -maletory | string of a violin is: b) Vibratory | c) Rotatory | d) none of these | | 15. | Total length betwee | een two points is know
b) Acceleration | O) = P | d) Distance | | 16. | The shortest distan | nce between two point | Speed | d) Distance | | 17. | The distance and d | direction of a body fro | om a fixed point sho
c) Speed | d) Displacement | | 18. | Speed is a Scale | quantity: | c) Both | d) none of these | | 19. | re - body covers | equal distance in the later of | body is known as | All of these | | 1 | \ II 'C | b) Variable | c) Constant | change with time then its | | 20. | velocity is said to b | be: b) Variable | c) Constant | d) All of these | | 21. | | rection of the movin | | th time then its velocity is | | | said to be: a) Uniform | Variable | c) Constant | d) All of these | | 22. | Rate of change of a) Distance | velocity is known as: b) Speed | Velocity | d) Acceleration | | 23. | | the body is increasing | then its acceleratio | on will be: | | | a) Positive | b) Negative | c) Uniform | d) Variable | | 24. | | the body is decreasing | then its acceleration | on will be: | | | a) Positive | b) Negative | c) Uniform | d) Variable | | 25. | If the velocity of a a) Positive | a body is uniform then
b) Negative | n its acceleration w Zero | | | 26. | | | , | d) Doubled of time then its acceleration | | 27. | a) Uniform The velocity and | Variable acceleration of a bo | c) Constant | d) Relative
uniform speed in a circula | | ٠, ۲ | | ~ r | dy moving with u | miform speed in a circui | | | a) In the same direction of the control cont | | b) In the opposi
d) Equal | ite direction | | | | | | | | | | | inclu then its ve | locity will be: | |-----|---------------------------|----------------------------|-----------------------|--------------------------| | 43. | If a car is movin | ng with uniform speed i | n a circle then 100 | d) None of the above | | | a) Uniform | Variable | c) Zero | ed to solve the problems | | | a) Omioim | equations of m | otion which are us | ed to a same | | 44. | There areabout the motion | n of bodies: | | d) 4 | | | a) 1 | b) 2 | v) 3 | | | 45. | What are points | (x,y) of a point called? | e) Co-ordinates | d) variables | | | a) Dependent vari | ables b) Axes | * t | | | 46. | Which of the fol | lowing can be in motio | n? | d) A round | | | a) A nicture | b) An aero plane | c) A plat form | | | 47. | What type of mo | otion is that of freely fa | lling bodies? | d) Linear | | | a) Rotatory | 6) Circular | c) Vibratory | | | 48. | What is the stud | ly of motion of bodies w | ithout reference to 1 | d) None of these | | 70. | -) Machanias | ✓ Kinematics | C) Dynami | | | 49. | A body is movin | g with uniform velocity | what is its accelerat | 10II. | | 47. | a) +ve | b) -ve | e) zero | d) none of these | | 50. | If $t = 0$ then the | distance is | -: \ | | | | a) S=Vi | b) maximum | c) minimum | d) zero | # ANSWER KEY | ANOTHER | | | | | | | | | | |---------|-----|----|-----|----|----------------------|----|-----|-----|-----| | Q. | Ans | | 1 | d | 11 | b | 21 | b | 31 | a | 4,1 | b | | 2 | a | 12 | d | 22 | С | 32 | c | 42 | d | | 3 | a | 13 | a | 23 | d | 33 | c | 43 | b | | 4 | b | 14 | b | 24 | \mathbf{a}_{\cdot} | 34 | d | 44 | c | | 5 | d | 15 | a | 25 | C, | 35 | d | 45 | c | | 6 | a | 16 | c | 26 | b | 36 | c | 46 | d | | 7 | c | 17 | a
 27 | c | 37 | d | 47 | b | | 8 | b. | 18 | b | 28 | b | 38 | d | 48 | b | | 9 | b | 19 | d | 29 | a | 39 | a | 49 | c | | 10 | d | 20 | a | 30 | b | 40 | d | 50 | d | | | | | | | | | | | | # KIPS SHORT QUESTIONS Define Kinematics. The study of motion of an object without discussing the cause of motion is called the 0.1 Ans: kinematics. Define dynamics. Q.2 Dynamics deals with forces and their action on the motion of bodies. Differentiate between Kinematics and Dynamics. 0.3 Ans: | Kinematics | Dynamics | |-------------|-----------------------------------| | Definition: | of its motion is called dynamics. | Is the state of rest or motion relative or absolute? The state of rest or motion is relative because there is no absolute motion or rest Q.4 Ans: Why the motion of falling ball is linear not random motion. Q.5 Motion of Falling Ball: Ans: The motion of falling ball is linear because it fall in a straight line not in irregular or disordered path. What Brownian Motion? Q.6 Brownian Motion: Ans: Random motion of gas molecules is called Brownian motion. The Brownian motion of gas or liquid molecules moves along a zigzag path. Differentiate between scalars and vectors quantities Q.7 Difference between scalar and vectors quantities: Ans: #### Dynamics Kinematics Definition: **Definition:** A physical quantity that is completely A physical quantity that is described described by its magnitude, unit and completely by its magnitude and unit only is direction is called vector quantity. called scalar quantity. Direction: No Direction: It requires direction. It does not requires direction Example: Example: displacement, Velocity, force, Length, mass, time, temperature, pressure, momentum, torque. speed How vectors can be represented? Q.8 Representation of Vectors: Ans: Symbolic Representation: To represent vectors we generally use bold letters to represent vectors. Example: F, a, d To represent vectors we generally use bar on arrows Example: Graphically a vector can be represent by a line segment with an arrow head Example: The line segment AB with arrow head at B represent the vector. The length of the line The line segment AB with arrow nead at B represent the direction of the line A B gives the magnitude the vector on a selected scale. While the direction of the line A B gives the direction of the vector. Difference between speed and velocity Q.9Difference between Speed and Velocity: Ans: #### Velocity Speed Definition: The rate of change in displacement of a Definition: The distance covered by an object in unit body is called velocity. time is called its speed. Direction: No direction: It is required direction It requires no direction Formula: Formula: Speed= $\frac{\text{distance covered}}{}$ displacement Velocity= time taken time taken Vector quantity: Scalar Quantity: It is a vector quantity It is a scalar quantity # Q.10 Define - (a) Uniform acceleration - (b) Deceleration - (c) Average acceleration (A) Uniform Acceleration Ans: Definition: A body has a uniform acceleration if it has equal charges in velocity in equal intervals of time. However short the internal may be. (B) Deceleration Definition: Acceleration of a body is negative if velocity of the body decreases, the direction of negative acceleration is opposite to the direction in which the body is moving. Negative acceleration is also called declaration or retardation. (C) Average Acceleration Definition: The ratio of total change in velocity by the total time taken. - Does a speedometer of a car measures its velocity? Q.11 - Speedometer of a Car The speedometer of a car measures only magnitude of velocity not the direction. Ans: Therefore we can say that speedometer of the car does not measure its velocity.? - Why a body moving along a circle with uniform speed has variable velocity? - A body moving along a circle with uniform speed has variable velocity because its 0.12Ans: direction is changing every time at every point on circular path. - Can a body moving with certain velocity in the direction of east can have 0.13acceleration in the direction of west? - Yes, a body moving with certain velocity in the direction east can have acceleration in the direction of west. It is the case when the velocity of the body decreases. When velocity Ans: decreases, acceleration is produced in opposite direction to the direction of motion. - Q.14. What do you know about graph? - **GRAPH:** Ans: Graph is a pictorial way of representing the information about the relation between various quantities. The quantities used in plotting a graph or called variables. # Independent Variable Quantity: The quantity which can be changed with our wish is called in dependent quantity. # Dependent Variable Quantity The quantity, value of which varies with the change in independent variable quantity is called the dependent variable quantity. - A line parallel to time axis in distance time graph shows what? 0.15 - Line Parallel to Time-Axis in Distance Time Graph: Ans: The line parallel to time-axis in distance time graph shows that object is at rest speed is zero. The distance moved by the object is zero. - A line parallel to time-axis in speed time graph shows what. Q.16 - Line Parallel to Time-Axis in Speed-Time Graph Ans: A line parallel to time-axis in speed time graph shows that the object is moving at a constant speed. Speed time graph Showing constant speed Q.17 (a) Slope of the distance time graph gives? (b) Slope of the speed time graph? (c) Area under the speed time graph? Ans: In distance (speed) time graph the slope gives us the speed of the body. V(ms-1) (b) Slope of Speed Time graph The shape of speed time graph gives us the magnitude of the acceleration. V(ms-1) (c) Area Under Speed-Time The area under speed time graph is equal the distance covered by an object. What do you know about Gravitational acceleration? 0.18 Ans: "Gravitational Acceleration" If we neglect air resistance then all the bodies either heavier or lighter will fall down with uniform acceleration. This uniform acceleration of freely falling bodies known as gravitational acceleration. It is represented by 'g' its value is 9.8 ms-2, but for simplicity we shall use the value of g as 10ms⁻² What are the points kept in mind where bodies are moving feeling under gravity Q.19When bodies are moving in downwind direction: Ans: Initial velocity 'Vi' of the free falling body will be zero. • Gravitational acceleration will be positive. When bodies are moving in upward direction Final velocity (vf) of the body will be zero. Gravitational acceleration will be negative. **UNIT-2** When a body is thrown vertically upward its velocity at the highest point is zero, Q.20why? When a body is thrown vertically upward it moves under gravity against the force of Ans: attraction of the earth. After every second the velocity of the body decreases by 9.8ms-2 and ultimately become zero at the highest point. That is why the velocity of a body becomes zero at the highest pint. A body is moving with uniform speed will its velocity be uniform? 0.21 **UNIFORM SPEED** Ans: If a body is moving with uniform speed may have uniform or variable velocity if the direction of the body is not changing then its velocity will be uniform. Example 1 A car moving in a straight line will have uniform velocity Example 2 A body moving with uniform speed in a circular path will have variable velocity because its direction charges at every point. How you will define the rest? Q.22 If a body does not change its position with respect to surroundings then it is said to be in Ans: a state of rest. Surrounding are the places in its neighborhood where various objects are present. How you will define the motion? Q.23 If a body continuously changes its position with respect to surroundings then it is said to Ans: be in a state of motion. How we can say that rest and motion are relative states? 0.24 The state of rest or motion of a body is relative. For example, a passenger is sitting in the Ans: moving bus is at rest because he/she is not changing his/her position with respect to the other passengers sitting in the bus. But to an observer outside the bus, the passengers and objects are in motion because they are changing their positions. Define Rotatory motion. Q.25 The spinning motion of a body around its axis is called rotatory motion. Ans: Example - Motion of Earth around its geographic axis - Motion of wheel and steering wheel around its axis - Motion of a ceiling electric fan Motion of Individual Particles Particles of spinning body move in circles and thus individual particles possess circular motion. Axis of Rotation A line around which a body rotates is called axis of rotation. Differentiate between circular motion and rotatory motion **Q.26** In circular motion, the point about which a body moves around, is outside the body while in Ans: rotatory motion, the line around which a body moves about is passing through the body itself. Q.27 Define Vibratory motion. When a body moves to and fro about its mean position is called vibratory motion. The Ans: motion of the body repeats from one extreme motion to the other extreme position. Examples - Motion of swing back and forth about its mean position - Motion of pendulum of wall clock - Motion of see saw Motion of hammer of ringing electric bell Motion of the strings of sitar What do you know about scalar and vector quantities 0.28 What do you know about scalar and vector quantity of the can be completely described by it magnitude only is called a scalar. The magnitude of a quantity means its numerical value with appropriate unit. Ans: Mass, length, time speed, volume, area, energy etc. Vector A physical quantity which can be completely described by its magnitude along with its direction. Example · Velocity, force, displacement, momentum, torque etc. How are vector quantities important to us in our daily life? It would be meaningless to describe vectors without direction. For example, distance of a Q.29place
from reference point is insufficient to locate that place. This direction of that place Ans: from reference point is also necessary to locate it. What do you know about Vector Representation? Q.30 Symbolic Representation Ans: To represent vectors, we generally use bold letters to represent vector quantities. **Examples** F, a, d or a bar or arrow over their symbols such as \overline{F} , \overline{a} , \overline{d} or \overline{F} , \overline{a} and \overline{d} **Graphical Representation** Graphically, a vector can be represented by a line segment with an arrow head. The line AB with arrow head at B represents the vector. The length of the line AB gives the magnitude of the vector on a selected scale. While the direction of the line from A to B gives the direction of the vector. What is Position? Q.31 The term position describes the location of place or a point with respect to some Ans: reference point. This reference point is called the origin. Example If you want to describe the position of your school from your home. The can be represented by S and home by H. The position will be represented by a straight line HS in the direction from H to S as shown in figure. Figure 2.16: Position of the school S from the home H What is meant by distance? 0.32 Distance Ans: The total length/separation of a path between two points is known as distance between those points. **Quantity** It is a scalar quantity Unit Its unit is meter (m). Representation It is represented by "S". O.33 What do you know about Displacement? Ans: The shortest distance between two points is known is called displacement which has magnitude and direction. It is directed from initial to final point. Representation It is represented by "d". Quantity It is a vector quantity and it is directed from initial to final point. Unit Its unit is meter (m). Example Consider the figure in a curved path. Let S be the length of the curved path between two points A and B on it. Then S is the distance between A and B. In this figure, join A and B by a straight line. The straight line AB gives the distance which is shortest between A and B. this shortest distance d in a particular direction is called displacement. Figure 2.17: Distance S (dotted line) and displacement d (red line) from points A to B. Q.34 What do you know about speed? Ans: The distance covered by an object in unit time is known as its speed. Mathematical form If a body covers distance 'S' in time 't' then its speed 'v' can be mathematically written as, Speed = Distance covered/Total time $$v = \frac{S}{t}$$ Distance = speed x time $$S = v x t$$ Quantity It is a scalar quantity. Unit SI unit of speed is meter per second (ms⁻¹). Q.35 How you will define the uniform speed? Ans: Speed is the average speed of a body because speed of the body may be changing during the time interval t. if the speed does not vary and has same value then it is taken as uniform speed and it is defined as: "If a body covers equal distances in equal intervals of time, however small the intervals may be, the speed of the body is said to be uniform". Q.36 A body is moving with uniform speed. Will its velocity be uniform? Ans: If a body is moving with uniform speed may have uniform or variable velocity. If the direction of the body is not changing then its velocity will also be uniform. Example 1 A body moving with uniform speed in the straight line will have uniform velocity. If the direction of the body is changing then its velocity will be variable. Example 2 A body moving with uniform speed in the circular path will have variable velocity because its direction changes at every point on the circle. What do you know about velocity? 0.37 The rate of displacement of a body with respect to time is called velocity. Ans: Speed of a body along with the direction in which the body is moving is known as velocity. #### Mathematical form Average velocity = $$\frac{\text{displacement}}{\text{time taken}}$$ $v = \frac{d}{t}$ Or $d = v \times t$ Here d is the displacement of the body moving with velocity v in time t. Here v is the average velocity of the body during time t. Quantity It is a vector quantity and its direction is same as the direction of displacement. Unit SI unit of velocity is same as that of speed that is meter per second (ms⁻¹). What do you know about uniform velocity? Q.38 If speed and direction of a body does not change then body has uniform velocity. In this Ans: case, during any time interval body has same magnitude and direction. Uniform velocity can be defined as: "If body has uniform velocity if it covers equal displacement in equal intervals of time however short the interval may be". Example Motion of the car with uniform speed in the straight line #### Differentiate between uniform and variable velocity. Q.39 Ans: | Uniform velocity | Variable velocity | | | |--|---|--|--| | • If the speed and direction of the moving | • If the speed or direction of the moving | | | | body does not change with time then its | body changes with time then its velocity | | | | velocity is said to be uniform. | is said to be variable. | | | | Example | Example | | | | | Body moving in circular path with | | | | uniform speed. | uniform or non-uniform speed. | | | 0.40 Does speedometer of a car measure its velocity? Ans: The speedometer of a car measures only magnitude of velocity not the direction. Therefore, we can say that speedometer of the car does not measure it velocity. Why a body moving along a circle with uniform speed has variable velocity? 0.41 A body moving along a circle with uniform speed has variable velocity because its Ans: direction is changing at every point on the circular path. What is meant by the acceleration? 0.42 The rate of change of velocity of a body is known as acceleration. Ans: Velocity of the body changes due change either in magnitude or direction or both. Kinematics # Mathematical form If a body is moving with initial velocity 'vi' and after some time 't' its velocity becomes 'v_f' then change in velocity will occur for time t. In this case, rate of change of velocity that is acceleration will be the average acceleration in time t. Acceleration = $$\frac{\text{change in velocity}}{\text{time}}$$ Acceleration = $$\frac{\text{final velocity} - \text{initial velocity}}{\text{time}}$$ $$a_{av} = \frac{v_f - v_i}{t}$$ Unit So In SI, the unit of acceleration is meter per second per second (ms⁻²). Quantity It is a vector quantity. O.43 What is meant by uniform acceleration? Let the time is divided into many small intervals of time. If the change in velocity during these entire interval remains constant then acceleration will also be constant this is called uniform acceleration which can be defined as: "If a body has equal changes in velocity in equal intervals of time, however small the intervals may be, then the acceleration of the body is said to be uniform". What is meant by positive acceleration and negative acceleration? 0.44 Positive acceleration Ans: If the velocity of the body is increasing then acceleration will be positive. The direction of positive acceleration is the same to the direction in which the body is moving without change in its direction. Example If a car is moving in straight line and the driver presses the accelerator the velocity of the car starts to increase. So the acceleration of the body will be positive. Vegative acceleration or retardation If the velocity of the body is decreasing then acceleration will be negative. The direction of negative acceleration is opposite to the direction in which the body is moving. Negative acceleration is also called retardation. Example If the driver applies brake, the velocity will start to decrease. So acceleration of the body will be negative and direction of acceleration is opposite to the direction of velocity. A body moving with uniform velocity. What will be its acceleration? .45 A body is moving with uniform velocity then its acceleration will be zero because ns: acceleration is defined as the rate of change of velocity. When the body is moving with uniform velocity, the change in velocity will be zero and therefore the acceleration will also be zero. Can a body moving with certain velocity in the direction of east can have 46 acceleration in the direction of west? Yes, a body moving with certain velocity in the direction of east can have acceleration in the direction of west. It is the case when the velocity of the body decreases. When velocity decreases, acceleration is produced in opposite direction to the direction of motion. What do you know about graph? Graphicula pictorial way of presenting the information about the relation between various quantities. The quantities used in plotting a graph are called the variables. Ans: Independent variable quantity The quantity which can be changed with our wish is called independent variable quantity Dependent variable quantity The quantity, value of which varies with the change in independent variable quantity is called the dependent variable quantity. Is velocity-time graphing a straight line? If yes then what information we get from it? Q.48 Yes, the velocity-time graph is a straight line and it shows that velocity of the body is Ans: changing uniformly and acceleration of the body will be uniform. What do you know about gravitational acceleration? Q.49 If we neglect air resistance, then all the bodies either lighter or heavier will fall down with uniform acceleration. This uniform acceleration of freely falling bodies is known as Ans: gravitational acceleration. It is represented by 'g'. Its value is 9.8ms⁻², but for simplicity we shall use the value of g as 10ms⁻². How can we use equations of motion for bodies, which are falling freely under the Q.50 Equations of motion can be used for bodies moving under gravity. In such cases we replace 'a' by 'g' and S by h. so equations of motion for bodies
falling freely can be Ans: written as, $$v_f = v_i + gt$$ $$h = v_i t + \frac{1}{2} gt^2$$ $$2gh = v_f^2 - v_i^2$$ What are the points kept in mind when bodies are moving freely under gravity? 0.51 When bodies are moving in downward direction: Ans: - Initial velocity 'vi' of the freely falling body will be zero - Gravitational acceleration will be positive When bodies are moving in upward direction: - Final velocity 'v_f' of the body will be zero. - Gravitational acceleration will be negative. Q.52 When a body is thrown vertically upward, its velocity at the highest point is zero. Why? When a body is thrown vertically upward, it moves under gravity against the force of Ans: attraction of the earth. So after every second the velocity of the body decreases by 9.8ms⁻² and ultimately becomes zero at the highest point. That is why the velocity of a body becomes zero at the highest point. ## TYPES OF MOTION Q.No.1 Define Translatory motion and its types. Such type of motion in which a body moves along a line without any rotation. The line may be straight or curved. #### Examples - Motion of a car in straight line - Motion of electron around the nucleus - Motion of gas molecules - Aeroplane moving straight is in translational motion # Types of Translatory Motion There are three types of translatory motion. - (i) Linear motion - (ii) Circular motion - (iii)Random motion - Linear motion (i) If the motion of a body is in straight line, it is known as linear motion. ## Examples - The motion of freely falling bodies - A car moving along the straight line #### Circular motion (ii) If a body moves in a circle then its motion is known as circular motion. # Examples - A stone attached with thread, when whirled, it will move along a circular path. - A toy train moving on a circular track. - A bicycle or car moving along a circular track - Earth moving around the sun in solar system #### Random motion (iii) The disorder or irregular motion of an object is called random motion. # Examples - The flight of a insect and birds - Brownian motion of gas or liquid molecules - Motion of dust or smoke particles in air # GRAPHICAL ANALYSIS OF MOTION # Q.No.2 Explain Distance - time Graph. The term distance and displacement are used interchangeably when the motion is in straight line. Similarly, if the motion is in a straight line then speed and velocity are also used interchangeably. In distance – time graph, time is taken along horizontal axis while the vertical axis shows the distance covered by the object. #### **Object at Rest** In the graph shown in figure, if the distance moved by the object with time is zero then the object is at rest. Thus a horizontal line parallel to time axis on a distance – time graph shows the speed of the object is zero. # Object moving with Constant Speed The speed of an object is said to be constant if it covers equal distance in equal intervals of time. The distance – time graph as shown in figure is a straight line. Its slop gives the speed of the object. # Object moving with variable speed When an object does not cover equal distances in equal intervals of time then its speed is not constant. In this case the distance – time graph is not a straight line as shown in figure. The slope of the curve at any point can be found from the slope of the tangent at that point. # Q.No.3 Explain Speed - Time Graph. Ans: In a speed – time graph, time is taken along x – axis and speed is taken along y–axis. # Object moving with constant speed When speed of an object is constant with time, then the speed – time graph will be horizontal line parallel to time – axis along x – axis as shown in figure. In other words, a straight line parallel to time axis represents constant speed of the object. # Object moving with uniformly changing speed (uniform acceleration) When the speed of an object is constant with time, then the speed – time graph will be a horizontal line parallel to time – axis along x – axis as shown in figure. In other words, a straight line parallel to time axis represents constant speed of the object. Figure 2.18: Distance-time graph when the object is at rest. Figure 2.19: Distance-time graph showing constant speed Figure 2.20: Distance-time graph showing variable speed. Figure 2.22: Speed-time graph showing constant speed. Figure 2.23: Graph of an object moving with uniform acceleration. # Distance traveled by a moving object The area under a speed – time graph represents the distance traveled by the object. If the motion is uniform then the area can be calculated using appropriate formula for geometrical shapes represented by the graph. # 2.6 EQUATIONS OF MOTION # Q.No.4 Derive the equations of motion for uniformly accelerated rectilinear motion # Ans: Equations of Motion There are three basic equations of motion for bodies moving with uniform acceleration. These equations relate initial velocity, final velocity, acceleration, time and distance covered by a moving body. # Important points in derivation of equations - We assume that the motion is along a straight line. - We consider only the magnitude of displacements, velocities, and acceleration. - Acceleration is taken as uniform. #### Case study Consider a body moving with initial velocity v_i in a straight line with uniform acceleration a. Its velocity becomes v_f after time t. The motion of the body is described by speed – time graph as shown in figure by line AB. The slope of the line AB is acceleration a. The total distance covered by the body is shown by the shaded area under the line AB. Equations of motion can be obtained easily from this graph. Figure 2.26: Speed-time graph. Area under the graph gives the distance covered by the body. # First equation of motion Speed – time graph for the motion of a body is shown in figure. Slope of line AB gives the acceleration of the body. Slop of line AB = $$a = \frac{BC}{AC}$$ As AC = OD and BC = BD - CD So, $a = \frac{BD - CD}{OD}$ BD = v_f , CD = v_i and OD = t $a = \frac{vf - vi}{t}$ $v_f - v_i = at$ $v_f = v_i + at$ Second equation of motion As Or Hence Therefore, In speed – time graph as shown in figure, the total distance S traveled by the body is equal to the total area OABD under the graph. i.e. Total distance = S = area (rectangle OACD + triangle ABC) Area of the rectangle OACD = OA \times OD $$= v_i x t$$ Area of the triangle ABC = $$\frac{1}{2}$$ (AC x BC) = $\frac{1}{2}$ t x at Since Total area OABD = area of rectangle + area of triangle ABC Putting the values in the above equation, we get $$S = v_i t + \frac{1}{2} t x at$$ $$S = v_i t + \frac{1}{2} a t^2$$ # Third equation of motion In speed - time graph shown in figure, the total distance S traveled by the body is given by the total area OABD under the graph. $$= S = \frac{OA + BD}{2} \times OD$$ $$2S = (OA + BD) \times OD$$ Multiply both sides by $$\frac{BC}{OD}$$, we get $$\frac{BC}{OD}$$, we get $$2S \times \frac{BC}{OD} = (OA + BD) \times OD \times \frac{BC}{OD}$$ $$2S \times \frac{BC}{OD} = (OA + BD) \times BC$$ $$2S \times \frac{BC}{QD} = (OA + BD) \times (BD - CD)$$ (as BC = BD - CD) As · $$OA = CD = Vi$$ $$\frac{BC}{OD} = a,$$ and $$BD = v_f$$ Putting the values in the in the above equation, we have $$2S \times a = (v_f + v_i) \times (v_f - v_i)$$ As $$a^2 - b^2 = (a + b) (a - b)$$ $$2aS = v_f^2 - v_i^2$$ # **MINI EXERCISE** - (1) When a body is said to be at rest? - Ans: When a body does not change its position with respect its surroundings. Then it is said to be in the state of rest. - (2). Give an example of a body that is at rest and is in motion at the same time. - Ans: If a person is sitting in a car, he will be in the state of rest with respect to the other person sitting in the car and he will be in the state of motion with respect to the person standing on the road side at the same time. - (3) Mention the type of motion in each of the following. - (i) A ball moving vertically upward. - Ans: Linear motion (Translatory motion) - (ii) A child moving down a slide. - Ans: Linear motion (Translatory motion) - (iii) Movement of a player in a football ground. - Ans: Random motion (Translatory motion) - (iv) The flight of a butterfly. - Ans: Random motion (Translatory motion) - (v) An athlete running in a circular track. - Ans: Circular motion (Translatory motion) - (vi) The motion of a wheel. - Ans: Rotatory motion - (vii) The motion of a cradle. - Ans: Vibratory motion # TEXTBOOK EXERCISE QUESTIONS | 2.1 | Encircle the correct | answer from the give | en choices. | | |-------|-------------------------|-----------------------------------|--------------------------|-------------------------------| | i. | A body has translato | ry motion if it moves | s along a. | | | •• | a) Straight line | | b) chere | | | | c) Straight line withou | it rotation | d) all of these | | | ii. | The motion of a body | y around an axis is c | alled moti | | | | a) Circular | b) Rotatory | c) Vibratory | d) Random | | iii. | Which of the followi | | ty? | | | | a) Canad | 1.) distance | c) displacement | d) power | | iv. | If an object is movi | ng with constant sp | peed then its distance- | time graph will be | | | straight line. | | | | | | a) Along time-axis | | b) Along distance-axis | 5 | | | c) Parallel to time-a | xis | d) Inclined to time-axi | S | | v. | A straight line parall | _
lel to time-axis on a o | distance-time graph te | lls that the object is: | | •• | a) Moving with cons | tant speed | b) At rest | | | | c) Moving with variab | ole speed | d) In motion | | | vi. | The speed-time gra | ph of a car is sho | wn in the figure, wh | ich of the following | | V 1. | statement is true? | | | | | | a) Car has an acceler | ration of 1.5 ms ⁻² | b) Car has constant sp | eed of 7.5 ms ⁻¹ | | | c) Distance travelled | by the car is 75 m | d) Average speed of the | ne car is 15 ms ⁻¹ | | | bistance and | v(ms ⁻¹) | | | | | | 15 | | | | | | | | | | | | | | | | | | | 1(s) | | | | | 01 | 10 | | | vii. | Which of the followi | ng
graphs is represe | nting uniform acceler: | ation? | | | d, | | d_{\bullet} | | | | | | | | | | a) | | b) | | | | | | | | | | V | | V ₁ | | | | | | | | | | | | | | | | c) ! | | d) \(\(\sigma \) | | | viii. | | | dy with time, we obta | | | | a) Speed | b) Acceleration | c) Velocity | d) Deceleration | | ix. | A ball is thrown ver | tically upward. It ve | locity at the highest pe | oint is: | | | a) -10 ms ² | b) Zero | c) 10 ms ⁻² | d) None of these | | х. | A change in position | | | | | | a) Speed | b) Velocity | c) Displacement | d) Distance | | xi. | A train is moving at | a speed of 36 kmh ⁻¹ . | Its speed expressed in | n ms ⁻¹ is: | | | a) 10 ms ⁻¹ | b) 20 ms ⁻¹ | c) 25 ms ⁻¹ | d) 30 ms ⁻¹ | | | | | • | _, | | | Kinamatiaa | |--|--| | UNIT-2 | Kinematics | | 2.2 Explain translatory motion and give exa | c) 500 m d) 5000 m | | motion. Ans: See Q.1 Long Question 2.3 Differentiate between the following: (i) Rest and motion | | | (ii) Circular motion and rotatory motion(iii) Distance and displacement(iv) Speed and velocity | | | (v) Scalars and vectors (i) Difference between Speed and Velocity | | | REST If, a body does not change its position with respect to surroundings then it is said to be in a state of rest.) | If a body continuously changes its position with respect to surroundings then it is said to be in a state of motion. | | (ii) Circular motion and rotatory motion. | | | Circular motion The motion of an object in a circular path is known as circular motion. | The spinning motion of a body about its axis is called rotatory motion. Examples: | | (II) Circular motion and rotatory motions | The second secon | |---|--| | Circular motion | Rotatory motion | | The motion of an object in a circular path is | The spinning motion of a body about its | | known as circular motion. | axis is called rotatory motion. | | Examples: | Examples: | | • The motion of earth around the sun. | • The motion of wheel about its axis. | | The motion of electron around nucleus. | Motion of ceiling fan. | | | | | 1 | | | | | |--------|-------------------|-------------|-----------|---------------| | (iii) | Difference betwe | en Distance | and | Displacement. | | (1111) | Difference betwee | ch Distance | CC III CA | Dispression | | DISTANCE | DISPLACEMENT | |---|---| | Actual (total) length between two points is | • The shortest distance between two | | known as distance. | points is known as displacement. | | It has no direction. | It is directed from initial to final point. | | It is a scalar quantity. | • It is a vector quantity. | | • It is represented by "S". | • It is represented by "d". | | (iv) Difference between Speed and Velocity | | | (iv | Difference between Speed and Velocity | | |-----|--|--| | | SPEED | VELOCITY | | | • The distance covered in unit time is | The rate of displacement of a body | | | known as speed. | with respect to time is called velocity. | | | Speed = distance/time | Velocity = displacement/time | | | _ S | $_{-}$ d | | | $=\frac{1}{t}$ | $-\frac{1}{t}$ | | | It is a scalar quantity. | • It is a vector quantity. | # (v) Difference between scalar and vector. | (v) Difference between scalar and vector. | VECTOR | |--|---| | SCALAR | Di : 1 quantities which are completely | | Physical quantities which are completely | described by their magnitude and | | Physical quantities which are completely described by their magnitude and only are known | described by their integritude and direction as well are known as vector. | | as scalar | unconon as | | Example | Example Force, displacement, velocity etc. | | Speed, distance, time etc. | Force, displacement, | # 2.4 Define the terms speed, velocity, and acceleration. # Ans: Speed The distance covered by an object in unit time is called its speed. # Mathematical Formula $$Speed = \frac{Distance covered}{Total time}$$ $$v = \frac{S}{t}$$ $$Distance = speed x time$$ $$S = v \times t$$ ## Velocity The rate of displacement of a body with respect to time is called velocity. #### OR Speed of a body along with the direction in which the body is moving. # Mathematical form Average velocity = $$\frac{\text{displacement}}{\text{time taken}}$$ $$v = \frac{d}{t}$$ $$d = v \times t$$ Or Here d is the displacement of the body moving with velocity v in time t. Here v is the average velocity of the body during time t. # Acceleration The rate of change of velocity of a body is known as acceleration. Velocity of the body changes due change either in magnitude or direction or both. # Mathematical form If a body is moving with initial velocity v_i and after some time 't' its velocity becomes ' v_i ' then change in velocity will occur for time t. In this case, rate of change of velocity that is acceleration will be the average acceleration in time t. Acceleration = $$\frac{\text{change in velocity}}{\text{total time}} = \frac{\text{change in velocity}}{\text{Total time}}$$ Acceleration = $\frac{\text{final velocity} - \text{initial velocity}}{\text{total time}}$ So $a_{av} = \frac{v_f - v_i}{t}$ 2.5 Can a body moving at a constant speed have acceleration? Ans: A body is moving with constant speed may or may not have acceleration. - If a body is moving with constant speed in straight line does not have acceleration. - If a body is moving with constant_speed and is not moving in straight line have acceleration. - 2.6 How do riders in a Ferris wheel possess translatory motion but not circular motion? - Ans: The riders do not move in circle of constant radius therefore their motion is not circular - 2.7 Sketch a distance time graph for a body starting from rest. How will you determine the speed of a body from this graph? Ans: The distance-time graph is shown below The slop of the graph gives speed with the help of the formula Speed (v) of the object = slope of line AB $$= \frac{\text{distance EF}}{\text{time CD}}$$ $$= \frac{20\text{m}}{10\text{s}}$$ $$= 2 \text{ ms}^{-1}$$ Figure 2.19: Distance-time graph showing constant speed. The speed found from the graph is 2 ms⁻¹ - 2.8 What would be the shape of speed time graph of a body moving with variable speed? - Ans: The shape of the velocity-time graph is zigzag when the body has variable speed - 2.9 Which of the following can be obtained from speed time graph of a body? - (i) Initial speed - (ii) Final speed - (iii) Distance covered in time t - (iv) Acceleration of motion - Ans: From velocity-time graph we can calculate Initial speed, final speed, distance covered in time t and acceleration of motion. - 2.10 How can vector quantities be represented graphically? - Ans: A vector can be represented graphically by drawing a straight line with an arrow head at one end. The Length of the line tells the magnitude and arrow head shows the direction of the vector - 2.11 Why vector quantities cannot be added and subtracted like scalar quantities? - Ans: In addition of vectors, both magnitude and direction are involved. Therefore, vectors cannot be added by simple method of scalar addition. - How are vector quantities important to us in our daily life? It would be meaningless to describe vectors without direction.
For example, distance of a place from reference point is insufficient to locate that place. This direction of that place 2.12 Ans: from reference point is also necessary to locate it. - Derive equations of motion for uniformly accelerated rectilinear motion. - Sketch a velocity time graph for the motion of the body. From the graph 2.13 explaining each step, calculate total distance covered by the body. Ans: 2.14 - Total distance traveled Ans: - area under the graph (trapezium OABC) - $\frac{1}{2}$ (sum of parallel sides) x height - $\frac{1}{2}$ (18s + 30 s) x (16 ms⁻¹) - 384 m Figure 2.25: Speed-time graph of a car during 30 seconds. # **PROBLEMS** A train moves with a uniform velocity of 36 kmh⁻¹ for 10s. Find the distance traveled 2.1 by it. # Given Data Data Velocity of train = $$V_{av} = 36 \text{ kmh-1} = \frac{36 \times 1000}{3600} = 10 \text{ ms}^{-1}$$ Time taken = $$t = 10 \text{ s}$$ # Required Distance traveled by train = $$S = ?$$ # Solution As we know that $$S = V_{av} x t$$ By putting the values, we have $$S = 10 \times 10$$ $S = 100 \text{ m}$ # Result Distance traveled by train = S = 100 m A train starts from rest. It moves through 1 km in 100s with uniform acceleration. 2.2 What will be its speed at the end of 100s. # Given Data Initial velocity of train = $$v_i = 0 \text{ ms}^{-1}$$ Distance covered by train = $$S = 1 \text{ km} = 1000 \text{ m}$$ Time taken by train = $$t = 100 \text{ s}$$ Required Speed of train after $100 \text{ s} = v_f = ?$ Solution First we have to find the acceleration, as we know that $$S = v_i t + \frac{1}{2} a t^2$$ By putting the values, we have $$1000 = 0 \times 100 + \frac{1}{2} \times a \times (100)^2$$ $$1000 = \frac{1}{2} \times a \times 10000$$ $$1000 = a \times 5000$$ $$a = \frac{1000}{5000}$$ So, $$a = 0.2 \text{ ms}^{-2}$$ Now from first equation of motion, we have $$v_f = v_i + at$$ by putting the values, we have $$v_f = 0 + 0.2 \times 100$$ $$v_f = 20 \text{ ms}^{-1}$$ Result Speed of train after $100 \text{ s} = v_f = 20 \text{ ms}^{-1}$ A car has a velocity of 10 ms⁻¹. It accelerates at 0.2 ms⁻² for half minute. Find the distance traveled during this and the find velocity of the car. Velocity of the car = vi = 10 ms⁻¹ Acceleration of the car = $a = 0.2 \text{ ms}^{-2}$ Time taken by car = t = 0.5 min. = 0.5 x 60 = 30 s Distance traveled by car = S = ? Solution As we know that $$S = v_i t + \frac{1}{2} a t^2$$ By putting the values, we have $$S = 10 \times 30 + \frac{1}{2} \times 0.2 \times (30)^2$$ $$S = 300 + 0.1 \times 900$$ $$S = 300 + 90$$ $$S = 390 \text{ m}$$ Result Distance traveled by car = S = 390 m A tennis ball is hit vertically upward with a velocity of 30 ms⁻¹. It takes 3 s to reach the highest point. Calculate the maximum height reached by the ball. How long it 2.4 will take to return to ground? ## Given Data Initial velocity of the tennis ball = $vi = 30 \text{ ms}^{-1}$ Time to reach the maximum height = t = 3 s Gravitational acceleration = $g = -10 \text{ ms}^{-2}$ Final velocity of the ball = $v_f = 0 \text{ms}^{-1}$ # Required Maximum height reached by the ball = h = ? ## Solution From second equation of motion in vertical motion, we have $$h = v_i t + \frac{1}{2} g t^2$$ by putting the values, we have $$h = 30 \times 3 + \frac{1}{2} \times (-10) (3)^2$$ $$h = 90 - 5 \times 9$$ $$h = 90 - 45$$ As the ball moves with uniform acceleration in vertical motion, so time taken by the ball in both directions will be same. Total time taken to return the ground = Time taken upwards + Time taken downwards Total time taken to return the ground = 3 s + 3s Total time taken to return the ground = 6 s #### Result Maximum height reached by the ball = h = 45 m Total time taken to return the ground = 6 s A car moves with uniform velocity 40 ms⁻¹ for 5 s. it comes to rest in the next 10 s 2.5 with uniform declaration. Find i) declaration ii) total distance traveled by the car When body moves with uniform velocity i) # Given Data Velocity of the car = $v_{av} = 40 \text{ ms}^{-1}$ Time taken by the car = t = 5 s # Required Distance traveled by the car = $S_1 = ?$ # Solution As we know that $$S = v_{av} x t$$ By putting the values, we have $$S_1 = 40 \times 5$$ $$S_1 = 200 \text{ m}$$ When speed of the car decreases and it comes to rest. Given Data Initial velocity of the car = $v_i = 40 \text{ ms}^{-1}$ Time taken by the car = t = 10 s Final velocity of the car = $v_f = 0 \text{ ms}^{-1}$ # Required Retardation produced in car = a = ?Distance traveled by the car = $S_2 = ?$ #### Solution So From first equation of motion, we have $$v_f = v_i + at$$ By putting the values, we have $$0 = 40 \times a \times 10$$ $$-40 = a \times 10$$ $$a = \frac{-40}{100}$$ $$a = -4 \text{ ms}^{-2}$$ Now from second equation of motion, we have $$S = v_i t + \frac{1}{2} a t^2$$ By putting the values, we have $$S_2 = 40 \times 10 + \frac{1}{2} (-4) \times (10)^2$$ $$S_2 = 400 - 2 \times 100$$ $$S_2 = 400 - 200$$ $$S_2 = 200 \text{ m}$$ So Total distance moved by car = $$S = S_1 + S_2 = 200 \text{ m} + 200 \text{ m} = 400 \text{ m}$$ #### Result Total distance moved by car = S = 400 m 2.6 A train from rest with an acceleration of 0.5 ms⁻². Find its speed in kmh⁻¹, when it has moved through 100 m. # Given Data Acceleration of the train = $a = 0.5 \text{ ms}^{-2}$ Initial velocity of the train = $v_i = 0$ ms⁻¹ Distance moved by train = S = 100 m # Required Final speed in kmh⁻¹ = v_f = ? ## Solution From third equation of motion, we have $$2aS = vf^2 - vi^2$$ by putting the values, we have $$2 \times 0.5 \times 100 = vf^2 - (0)^2$$ $$100 = vf^2$$ by taking square root on both sides, we have $$\sqrt{100} = v_f^2$$ So $$v_f = 10 \text{ ms}^{-1}$$ In kmh-1 $$v_f = \frac{100 \times 3600}{1000}$$ $$v_f = 36 \text{ kmh}^{-1}$$ Final speed in $kmh^{-1} = v_f = 36 kmh^{-1}$ A train starting from rest accelerates uniformly and attains a velocity 48 kmh⁻¹ in 2 minutes. It travels at speed for 5 minutes. Finally, it moves with uniform retardation 2.7 and is stopped after 3 minutes. Find the total distance traveled by the train. # Solution Total Distance traveled = area under the graph (trapezium OABC) $$= \frac{1}{2} (\text{sum of parallel sides}) \times \text{height}$$ $$= \frac{1}{2} (600 + 300) \times 13.33$$ $$= \frac{1}{2} (900) \times 13.33$$ $$= 450 \times 13.33$$ $$= 5998.5$$ $$= 5999 \text{m} = 6000 \text{ m}$$ - A cricket ball is hit vertically upwards and returns to ground 6 s later. Calculate Result 2.8 - (i) Maximum height, reached by the ball. - (ii) Initial velocity of the ball. # Given Data Final velocity of the ball = $v_f = 0$ ms⁻¹ Gravitational acceleration = $g = 10 \text{ ms}^{-2}$ Time in which ball return to ground = t = 6 s # Required Maximum height reached by ball = h = ? Initial velocity of the ball = v_i = ? ## Solution As the ball moves with uniform acceleration in vertical motion, so time taken by the ball Total time taken to return the ground = Time taken upwards + Time taken downwards 6s = Time taken upwards + Time taken downwards As Time taken upwards = Time taken downwards Total time taken to return the ground = 2×10^{-2} x Time taken upwards Time taken upwards = 6s/2 = 3 sSo From first equation of motion, we have $$v_f = v_i + gt$$ By putting the values, we have $$0 = v_i + (-10) \times 3$$ $$0 = v_i - 30$$ $$S_0 = v_i = 30 \text{ ms}^{-1}$$ Now from second equation of motion, we have $$S = v_i t + \frac{1}{2} g t^2$$ By putting the values, we have $$S = 30 \times 3 + \frac{1}{2} \times (-10) \times (3)^2$$ $$S = 90 - 5 \times 9$$ $$S = 45 \text{ m}$$ ## Result Maximum height reached by ball = h = 45 m Initial velocity of the ball = $v_i = 30 \text{ ms}^{-1}$ 2.9 When brakes are applied, the speed of a train decreases from 96 kmh⁻¹ to 48 kmh⁻¹ in 800 m. How much further will the train move before coming to rest? (Assuming the retardation to be constant) # Given Data Initial velocity of train = $$v_i$$ = 96 kmh⁻¹ = 26.67 ms⁻¹ Final velocity of train = v_f = 48 kmh⁻¹ = 13.33 ms⁻¹ # Required Retardation of the train = a = ? Distance covered by train = 800 m #### Solution From third equation of motion, we have $$2aS = v_f^2 - v_i^2$$ By putting the values, we have 2 x a x 800 = $$(13.33)^2 - (26.67)^2$$ 1600 x a = $177.7 - 711.29$ 1600 x a = -533.6 $$a = -0.33 \text{ ms}^{-2}$$ #### Given Data Initial velocity of train = v_i = 48 kmh⁻¹ Final velocity of train = $v_f = 0 \text{ ms}^{-1}$ retardation of train = $a = -0.33 \text{ ms}^{-2}$ # Required Distance covered by train = S = ? # Solution From third equation of motion, we have $$2aS = v_f^2 - v_i^2$$ By putting the values, we have $$2 \times (-0.33) \times S = (0)^{2} - (13.33)^{2}$$ $$-0.66 \times S = -177.7$$ $$S = \frac{-177.7}{-0.66}$$ $$= 269 \text{ m}$$ # Result The train will move by 269m before coming to rest # In the above problem, find the time taken by the train to stop after the application 2.10 of the brakes. # Given Data 26.67 ms⁻¹ Initial velocity of train = $v_i = 96 \text{ kmh}^{-1}$ Final velocity of train = $v_f = 0 \text{ ms}^{-1}$ Retardation of train = $a = -0.33 \text{ ms}^{-2}$ # Required Time taken by the train = t = ? # Solution From first equation of motion, we have $$v_f = v_i + at$$ By putting the values, we have $$0 = 26.67 + (-0.33) \times t$$ $$-26.67 = -0.33 \times t$$ $$t = \frac{-26.67}{-0.33}$$ $$t = 80 \text{ s}$$ # Result Time taken by the train = t = 80 s