Chapter 2
Single-Particle Motions

2.1 Introduction

What makes plasmas particularly difficult to analyze is the fact that the densities
fall in an intermediate range. Fluids like water are so dense that the motions of
individual molecules do not have to be considered. Collisions dominate, and the
simple equations of ordinary fluid dynamics suffice. Al the other exireme in very
low-density devices like the alternating-gradient synchrotron, only single-particle
trajectories need be considered; collective effects are often unimportant. Plasmas
behave sometimes like fluids, and sometimes like a collection of individual parti-
cles. The first step in leaming how to deal with this schizophrenic personalily is o
understand how single particles behave in electric and magnetic fields. This chapter
difTers from succeeding ones in that the E and B fields are assumed to be prescribed

and not affected by the charged particles.

22 Uniform E and B Fields
221 E=0

In this case, a charged particle has a simple cyclotron gyration. The equation of

motion is

m£= gvx B (2.1)
Taking Z to be the direction of B (B=RB i), we have
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This describes a simple harmonic oscillator at the cyclotron frequency, which we
define 10 be

il = {:2.1)

By the convention we have chosen, @, is always nonnegative. B is measured in
2 . 4 s .
tesla, or webers/m™, a unit equal to 10° G. The solution of Eq. (2.2) is then

Viy = I'Lexp(:l:i'm,_.f + iy, y)
the = denoting the sign of g. We may choose the phase § so tha
ve= v e =1 (2.4a)

where v, is a positive constant denoting the speed in the plane perpendicular to B.
Then

1 .
by = ity = ey = iy e = § (2.4b)
gB e

Integrating once again, we have

v , I\ .

I .5 1

X =ag= ===y —yy =™ (2.5)
k. ik

We define the Larmeor radius to be

rL=t=""2 (2.6)

Taking the real pan of Eq. (2.5), we have

Y=xp=rysinmd  y—yg=xrpcoswl (2.7)

This describes a circular orbit around a guiding center (xp, yo) which is fixed
(Fig. 2.1). The direction of the gyration is always such that the magnelic field
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Fig. 2.1 Larmor orbits GUIDING
in a magnetic field @ B CENTER

ION ELECTRON

generated by the charged particle is opposite to the externally imposed field. Plasma
particles, therefore, tend to reduce the magnetic field, and plasmas are diamagnetic.
In Fig. 2.1, the right-hand rule with the thumb pointed in the B direction would give
ions a clockwise gyration. Tons gyrate counterclockwise (o generale an opposing B,
thus lowering the energy of the system. In addition to this motion, there is an
arbitrary velocity v. along B which is not affected by B. The trajectory of a charged
particle in space is, in general, a helix.

2.2.2 Finite E

If now we allow an electric field to be present, the motion will be found to be the
sum of two motions: the usual circular Larmor gyration plus a drifl of the guiding
center. We may choose E to lie in the ax—: plane so that E,=0. As before, the
z component of velocity is unrelated to the transverse components and can be
treated separately. The equation of motion is now

d"r
m—=g(E+ v x B) (2.8)
dt
whose = componen! is
dv:  q,.
dt m o
or
E.
V. =Lr+ Va (2.9)

m

This is a straightforward acceleration along B. The transverse components of
Eq. (2.8) are
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di = EE; =+ w vy

‘I’I' m {2 In)
dvy =0Fwyv .

dr M

Differentiating, we have (for constant E)

V= -y

-‘-,r = :Fr.l’,r (‘%E; + "?‘l-'l-'_-..) — -"”E (% o= 1"}')

We can wrile this as

d’ E. 2 E;
F(l_r-i—E) = =1 (1_,- +E) (2.11)

so that Eq. (2.11) 1s reduced to the previous case (Eq. (2.2)) if we replace v, by
vyt (E./B). Equations (2.4a) and (2.4b) are therefore replaced by

v, = v, el
4 E 2.12

vy = hiv, e — — (212)
The Larmor motion 1s the same as before, but there is superimposed a dnift vy, of the
guiding center in the —y direction (for E, > 0) (Fig. 2.2).

To obtain a general formula for vy, we can solve Eq. (2.8) in vector form,
We may omit the m dv/dr term in Eq. (2.8), since this term gives only the circular
motion at e, which we already know about. Then Eq. (2.8) becomes

E+vxB=0 (2.13)

® E— @
oL

ION ELECTRON

Fig.22 Particle drfis in crossed electric and magnetic fields


https://v3.camscanner.com/user/download

R

22  Uniform E and B Fields 23
Taking the cross product with B, we have
ExB = Bx (vxB) = vB° =B(v-B) (2.14)
The transverse components of this equation are
vlg._.=EfoE: = Ve (2.15)

We define this to be v, the electric field drift of the guiding center. In magnitude,

this drift is
SV
ot fm) m_ (2.16)
Bltesla) sec
I is important to note that vg is independent of g, m, and v, The reason is

obvious from the following physical picture. In the first half-cycle of the ion’s orbit
in Fig. 2.2, it gains energy from the electric field and increases in v, and, hence,
in .. In the second half-cycle, it loses energy and decreases in r. This difference
in r_ on the left and right sides of the orbit causes the drift vz, A negative electron
gyrates in the opposite direction but also gains energy in the opposite direction; it
ends up drifting in the same direction as an ion. For particles of the same velocity
but different mass, the lighter onc will have smaller 1, and hence drift less per
cycle. However, its gymtion [requency is also larger, and the two effects exactly
cancel. Two particles of the same mass but different energy would have the same
w,. The slower one will huve smaller ry_ and hence gain less energy from E in a half-
cycle. However, for less energetic particles the fractional change in r_fora given
change in energy is larger, and these two effects cancel (Problem 2.4).

The three-dimensional orbit in space is therefore a slanted helix with changing

pitch (Fig. 2.3).

ExB

it

Fig. 23 The actual orbit of a gyrating particle in space
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2.2.3 Gravitational Field

The foregoing result can be applied to other forces by replacing gE in the equation
of motion (2.8) by a general force F. The guiding center drift caused by F is then

IFxB
=2 % 2.17
VI= TR 2.17)
In particular, if F is the force of gravity mg, there is a dnft
megxB
v, =2 2.18
g B (2.18)

This is similar to the drift v in that it is perpendicular to both the force and B, but it
differs in one important respect. The drift v, changes sign with the particle’s charge.
Under a gravitational force, ions and electrons drift in opposite directions, so there
is 2 nel current density in the plasma given by

_ , gxB
j= ﬂEl‘”'f'J'I]?_— (2.19)

The physical reason for this drift (Fig. 2.4) is again the change in Larmor radius as
the pariicle gains and loses energy in the gravitational field. Now the electrons
gyrate in the opposite sense (o the ions, but the force on them is in the same
direction, so the drift is in the oppesite direction. The magnitude of vy is usually
negligible (Problem 2.6), but when the lines of force are curved, there is an effective
gravitational force due to centrifugal force. This force, which is not neghgble, is
independent of mass; this is why we did not stress the m dependence of Eq. (2.18).
Centrifugal force is the basis of a plasma instability called the “gravitational™
instability, which has nothing to do with real gravity.

®\M) uummmmm@

ION ELECTRON
®B

Fig. 24 The drift of a pyrating panicle in a gravitational field
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2.7. Anunneutralized electron beam has density .= 10" m™" and radius a = | em
and flows along a 2-T magnetic field. If B is in the 4z direction and E is the
electrostatic field due to the beam’s charge, calculate the magnitude and
direction of the E x Bdnlt at r=a (See Fig. P2.7).

A\
B a— ()
<

2a
Fig. P27

2.3 Nonuniform B Field

Now that the concept of a guiding center drift is firmly established, we can discuss
the motion of particles in inhomogeneous fields—E and B fields which vary in
space or time. For uniform fields we were able to obtain exact expressions for the
guiding center drifts. As soon as we introduce inhomogeneity, the problem becomes
oo complicated to solve exactly. To get an approximate answer, il is customary 10
expand in the small ratio ri /L, where L is the scale length of the inhomogeneity.
This type of theory, called orbit theory, can become extremely involved. We shall
examine only the simplest cases, where only one inhomogeneity occurs at a time,

2.3.1 VBL1B: Grad-B Drift

Here the lines of force' are straight, but their density increases, say, in the
y direction (Fig. 2.5). We can anticipate the result by using our simple physical
picture. The gradient in |B| causes the Larmor radius 1o be larger at the boitom of
the arbit than at the top, and this should lead to a drift, in opposite directions for ions
and electrons, perpendicular to both B and VB, The drift velocity should obviously
be proportional to r/L and to v, .

Consider the Lorentz force F=gv x B, averaged over a gyration. Clearly,
F, =0, since the particle spends as much time moving up as down. We wish
to calculate F,., in an approximate fashion, by using the undisturbed orbit of the
particle to find the average. The undisturbed orbit is given by Eqgs. (2.4a),

! The magnetic field lines are ofien called “lines of force.™ They are not lines of force. The
misnomer is perpetuated here Lo prepare the student for the treacheries of his prolession.
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Fig.25 The drfl of a gyrating particle in a nonuniform magnetic field
(2.4b), and (2.7) for a uniform B ficld. Taking the real part of Eqgs. (2.4u) and
(2.4b), we have
0B
Fy = =gv.B.(y) = —gv i (cos wct)|By £ ro(cos at) M (2.20)
}J
where we have made a Taylor expansion of B field about the point x, =0, y,=0and
have wsed Eq. (2.7):
H - — Bl],-l-*{r'?)ﬁ"l"”' [E'EI]
B: = Bo+ y(0B:/0y) + -~

This expansion of course requires r /L < 1, where L is the scale length of 08z/0y,
The first term of Eq. (2.20} averages 10 zero in a gyration, and the average of cos”
w_ t is ¥, so that

Fy = F4viri5(0B/2y) (222

The guiding center dnft velocity is then

IFxB |1F,. vy 08
— - = - = — — 2.23
‘F: I'-_? E qlﬂlx :F H 1 {'Jyx ( }

where we have used Eq. (2.17). Since the cheice of the y axis was arbitrary, this can
be generalized 1o

BxVE
B

Vop = tiurL (2.24)

This has all the dependences we expected from the physical picture; only the factor
2 (ansing from the averaging) was nol predicied. Note that the = stands for the sign
of the charge, and lightface B stands for |B|. The quantity vyg is called the grad-B
drift; it is in opposite directions for ions and electrons and causes a cumrent
transverse 1o B. An exact calculation of vpg would require using the exact orbil,
including the drift, in the averaging process.

CamScanner
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2R 2 Single-Particle Motions
2.3.2 Curved B: Curvature Drift

Here we assume the lines of force 10 be curved with a constant radius of curvature
R.., and we take |B| to be constant (Fig. 2.6). Such a field does not obey Maxwell's
equations in a vacuum, so in practice the grad-B drift will always be added 10 the
effect derived here. A guiding center drifl arises from the centrifugal force felt by
the particles as they move along the Geld lines in their thermal motion. If rﬁ denotes
the average square of the component of random velocity along B, the average
centrifugal force is

F=mi—s (2.25)

According to Eq. (2.17), this gives rise 1o a drift

|Fer x B mvj R x B
g B B R

The drift vg is called the eurvature drift.
We must now compute the grad-B drift which accompanies this when the

decrease of |B| with radius is taken into account. In a vacuum, we have V x B =0.
In the cylindrical coordinates of Fig. 2.6, V x B has only a z component, since B has
only a @ component and VB only an r component. We then have

Flg. 2.6 A curved
magnetic feld

-

Fet
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VxB) =2l (B)=0 Byt (2.27)
== ror VT T |
Thus
1 ViB _ R.
Bl oxc— —_—= 2.28
IB] o & 5 - R (2.28)
Using Eq. (2.24), we have
o _van R, 1viRexB_m,R xB
Vu=Fi g DX =230 ey <1 i e )

Adding this to vg, we have the total drft in a curved vacuum feld:

Ye+ Yvg = (2.30)

mRB. xB 2,13
q R (i+23)

It is unfortunate that these drifts add. This means that if one bends a magnetic
field into a torus for the purpose of confining a thermonuclear plasma, the particles
will dnft out of the torus no matter how one juggles the temperatures and magnetic
fields.

For a Maxwellian distribution, Egs. (1.7) and (1.10} indicate that ﬁ and 113 are
each equal to KT/m, since v, involves two degrees of freedom. Equations (2,3) and

(1.6) then allow us to write the average curved-field drif1 as

Vi rL
¥ =4—v 2.30u
Rr ﬂ]‘l.. L Rr" fh? { )

Veyvp =%

where ¥ here is the direction of R, x B. This shows that Vg,gg depends on the
charge of the species but not on its mass.

2.3.3 VB||B: Magnetic Mirrors

Now we consider a magnetic field which is pointed primarily in the = direction and
whose magnitude varies in the = direction. Let the field be axisymmelric, with
By=0 and 0/00=0. Since the lines of force converge and diverge, there is
necessarily a component B, (Fig. 2.7). We wish to show that this gives rise to a
force which can trap a particle in a magnetic feld.
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Fig. 2.7 Drifl of a panticle in a magnetic mirror feld

We can obtain B, from V-B=0:

[3}+i£_n (2.31)

If dB.J0x is given at r=0 and does not vary much with r, we have approximately

(2.32)

The varation of |B| with r causes a grad-B dril1 of guiding centers about the axis of
symmeltry, but there is no radial grad-B drift, because ¢B/26 =0. The components
of the Lorentz force are

“‘r < q["ﬂnz _11.-‘5:1}

@
F,= q("’rﬂ: 1 ]";Er) (2.33)
@ Q
q{l o =Vl }

@

Two terms vanish if By=0, and terms 1 and 2 give rise to the usual Larmor
gyrition. Term 3 vanishes on the axis; when it does not vanish, this azimuthal
force causes a dnft in the radial direction. This drift merely makes the guiding
centers follow the lines of force. Term 4 is the one we are interested in. Using
Eq. (2.32), we obtain

F. =3qvor(2B./2.) (2.34)
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We must now average over one gyration. For simplicity, consider a particle whose
guiding center lies on the axis. Then vp is a constant during a gyration; depending on
the sign of g, vg is F v,. Since r=ry, the average force is

1 'aE:.
Fo=Fsqvun—-=F49,3-""78 o

2 3 2 -
1 vy OB ponvy OB: (2.35)

We define the magnetic moment of the gyrating particle 1o be

m-.'i,-".'i' (2.36)

|
2

=

so that

F.= —u(0B./0:) (2.37)
This is a specific example of the force on a diamagnetic particle, which'in general
can be written
F" = -FEH’I 0§= = H "?"B {2.33}
¢ that the definition (2.36) is the same as the
usual definition for the magnelic moment of a current loop with area A and current
1: p=1IA. In the case of a singly charged ion, I'is generated by a charge e coming
around /2 times a second: I =emd2x. The area A is mri. = o} oz, Thus

where ds is a line element along B. Not

nto regions of stronger or weaker B, its Larmor radius

As the particle moves i
ariant. To prove this, consider the component of the

changes, but g remains iy
equation of motion along B:

ff‘l'n oB -
! — = 2.39
" Hos (2:39)
Multiplying by v on the lefi and its equivalent ds/dt oa the right, we have
dvy _df o OB ds dB
_— — A = - ——= - —— 2.40
" m(z )= a (240)

Here dB/dr is the variation of B as seen by the panicle; B itself is constant,

The particle’s energy musl be conserved, so we have
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E(13‘3—"'-15—1] 241
dr EHHII+EH“J-)_E(‘__*”T'H+'" )— (2.41)

With Eq. (2.40) this becomes

dB d
-FE +E{}IB] =0

so that
dyfdt =0 (2.42)

The invariance of u is the basis for one of the primary schemes for plasma
confinement: the magnetic mirror. As a particle moves from a weak-field region 10
a strong-field region in the course of its thermal motion, it sees an increasing B, and
therefore its v, must increase in order 1o Keep yr constant, Since its total energy musl
remain constant, vy must necessarily decrease. If B is high enough in the “throat™ of
the mirror, v eventually becomes zero; and the particle is “reflected” back to the
weak-field region. It is, of course, the force F)| which causes the reflection. The
nonuniform field of a simple pair of coils forms two magnetic mirrors between
which a plasma can be trapped (Fig. 2.8). This effect works on both ions and
electrons.

The trapping is not perfect, however. For instance, a particle with v, =0 will
have no magnetic moment and will not feel any force along B. A particle with small
v 1 /vy ot the midplane (B = By) will also escape if the maximum field B, is not large
enough. For given By and B,,,, which particles will escape? A particle withv =v, g
and vj =wyp al the midplane will have v, = r'J_ and vj=0 at its turning point. Let
the field be B’ there. Then the invarance of g yields

| d »
smia/Bo =5mv' /B (2.43)

Conservation of energy requires

Fig. 28 A plasma trapped between magnetic mirrors
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e

v, =vip+vje= g (2.44)

Combining Eqgs. (2.43) and (2.44), we find

Bo _vig _Vip_ .. 2
—?=If_?=‘#§ sin =@ (2.45)
B oW

where @ is the pitch angle of the orbit in the weak-field region. Panticles with
smaller # will mirror in regions of higher B. If # is too small, B’ exceeds B,; and
the parnticle does not mirror at all. Replacing B’ by B, in Eq. (2.45), we see thal the
smallest & of a confined particle is given by

sin’f,, =By /By = 1/R,, (2.46)

where Ry, is the mirror ratio. Equation (2.46) defines the boundary of a region in
velocity space in the shape of a cone, called a loss cone (Fig, 2.9). Panicles lying
within the loss cone are not confined. Consequently, a mirror-confined plasma is
never isotropic. Note that the loss cone is independent of ¢ or m. Without collisions,
both ions and electrons are equally well confined. When collisions occur, particles
are lost when they change their pitch angle in a collision and are scattered into the
loss cone. Generally, electrons are lost more easily because they have a higher
collision frequency.

The magnetic mirror was first proposed by Enrico Fermi as a mechanism for the
acceleration of cosmic rays. Protons bouncing belween magnelic mirrors
approaching each other at high velocity could gain energy at each bounce
(Fig. 2.10). How such mirrors could arise is another story. A further example of
the mirror effect is the confinement of particles in the Van Allen belts. The
magnetic field of the earth, being strong at the poles and weak at the equator,
forms a natural mimror with rather large R,,,.

Fig. 29 The loss cone v, ‘
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ym and the electric field be nonuniform. For

' . ic field be unifi : :
Now we let the magnelic 1i¢ direction and to vary sinusoidally in the

simplicity, we assume E 10 be in the x
x direction (Fig. 2.11):

E= EH(CDS L‘l‘}f {2.47}
s the result of a sinusoidal
In practice, such a charge
n. The equation of motion is

This field distribution has a wavelength & =2r/k and i
distribution of charges, which we need not specifly.
distribution can arise in a plasma during a wave molio

m(dv /dr) = g[E(x)+V x B] (2.48)
whose (ransverse components are

B - ‘
Vi =q—1'_,. +£Et (x) Vy==—1 (2.49)

m

£ (2.50)

. 2 Ly
Vo = = vy T ar i

v i

Eu\ ®
\_/ ®
® B g

Fig. 2.11 Drifi of a gyrating purticle in a nonuniform electric ficld

L] 2  Single-Farticle Motions

2 1 Eilx)

Vy = —.*u.:_ r}l - rﬂ; B

(2.51)

Here E,(x) is the electric field at the position of the particle, To evaluate this, we
need 10 know the particle’s orbit, which we are trying to solve for in the first place.
I the electric field is weak, we may, as an approximation, use the undisturbed orbit
to evaluate £,(x). The orbil in the absence of the E field was given in Eq. (2.7):

CamScanner
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E.(x
¥y = —mfr_.,. — :(x)

“ B

(2.51)

Here E,(x)is the electric field at the position of the particle. To evaluate this, we
need to know the particle’s orbit, which we are trying 1o solve for in the first place.
If the electric field is weak, we may, as an approximation, use the undisturbed orbit
to evaluate E, (x). The orbil in the absence of the E field was given in Eq. (2.7):

X = Xp+ry sin @t (2.52)

From Eqgs. (2.51) and (2.47), we now have

2 'JE |
¥, = —arv, —n.r;Eﬂ cos k(xg 4 ry sin wer) (2.53)

Anticipating the result, we look for a solution which is the sum of a gyration at @,
and a steady drift v, Since we are interested in finding an expression foryg, we lake
out the gyralory molion by averaging over a cycle. Equation (2.50) then gives
7, = 0. In Eq. (2.53), the oscillating term ¥, clearly averages to zero, and we have

'IFJ-Z{]:—I'LI

A ".|E
Ty - W;Fn cos k(xp + rosiner) (2.54)

Expanding the cosine, we have

cos k{xg + ro sin acf) = cos (kvg) cos (krpsinw.t)
(2.55)
— sin (kxp) sin (Ary sin e 1)

It will suffice to treal the small Larmor radius case, kr < 1. The Taylor expansions

COSE= ]—TI}.E': + -
= (2.56)
sine=¢g+4---

allow us to write
. 1 . . .
cos k (xp + rpsines f) == (cos k) (I — kzri sin :mcr) — { sin kxg)hry sin ot

The last term vanishes upon averaging over time, and Eq. (2.54) gives

= Eo 1,2 2 Ex(xo) 1,22
‘I.-!,:—E{C{)S.ﬁ;ru}([—]k rL) =—— (I_Ek rL) (2.57)
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Thus the usual E x B drift is modified by the inhomogeneity 10 read

ExDB 1,2 2
vE=_E!_(1-31 r?) (2.58)

The physical reason for this is easy to see. An ion with its puiding center at a
maximum of E actually spends a good deal of its time in regions of weaker E. Its
average drifl, therefore, is less than E/B evaluated at the guiding center. Ina linearly
varyiﬁg E field, the ion would be in a stronger field on one side of the orbit and in a

field weaker by the same amount on the other side: the correction to Vg then cancels
out. From this it is clear that the correction term depends on the second derivative of
E. For the sinusoidal distribution we assumed, the second denivative is always
negative with respect to E. For an arbitrary variation of E, we need only replace ik

by V and write Eq. (2.58) as

-y E % B
VE = (] +irf_?-)—ﬂz—- (2.59)

The second term is called the finite-Larmor-radiits effect. What is the significance of
this correction? Since ry_ is much larger for ions than for electrons, vg is no longer
independent of species. If a density clump occurs in a plasma, an electric field can
cause the ions and electrons to separate, generaling another electric field. If there isa
feedback mechanism that causes the second electric field to enhance the first one,
E grows indefinitely, and the plasma is unstable. Such an instability, called a driff
instability, will be discussed in a later chapter. The grad-B drifi, of course, is also a
finite-Larmor-radius effect and also causes charges [0 separate. According (o
Eq. (2.24), however, Vg is proportional to kry, whereas the correct ion term in
Eq. (2.58) is proportional to 4717, The nonuniform-E-field eflect, therefore, 18
important at relatively large k, or small scale lengths of the inhomogeneity. For
this reason. drift instabilities belong to a more general class called microinstabilities.

2.5 Time-Varying E Field

Let us now take E and B 1o be uniform in space but varying in time. First, consider
the case in which E alone varies sinusoidally in time, and let it lie along the x axis:

E = Ee™% (2.60)

Since E_ = imE,, we can write Eq. (2.50) as

- 2 [y
Ve = =i, ("‘.r :F_—) (2.61)

o+

iy B
Let us define
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il‘ﬂ‘ E‘
w,. B
- _E,
VE F

=t
=
1]

(2.62)

where the tilde has been added merely to emphasize that the drift is oscillating. The
upper (lower) sign, as usual, denotes positive (negative) ¢. Now Eqs. (2.50) and
(2.51) become

e = —a; (v = ¥)

2.63
ity = —ar; (v, — V) N

By analogy with Eq. (2.12), we try a solution which is the sum of a drift and a
gyratory motion:

Vi = l'_|_("“" + FF

. e (2.64)
vy =kiv, " +¥g
If we now dilTerentiate twice with respect to time, we find
¥, = -ﬂ—"E'-'j =+ (l’l‘i‘:': - rr!:]FF {255]

iy = =l + [mE - u;F)T‘.E

This is not the same as Eq. (2.63) unless w” << w?. Il we now make the assumplion
that E varies slowly, so that a® < ur":. then Eq. (2.64) is the approximate solulion 1o
Eq. (2.63).

Equation (2.64) tells us that the guiding center motion has two components. The
v component, perpendicular to B and E, is the usual E x B drift, except that vg now
oscillates slowly at the frequency w. The x component, a new drift along the
direction of E, is called the polarization drift. By replacing iw by 8/0t, we can
generilize Eq. (2.62) and define the polanization dnift as

v, =+ 4E (2.66)

(il 8 W

Since v, is in opposite directions for ions and electrons, there is a polarization
current; for Z=1, this is

ne
j,1I = H‘E"(l-'.'F - I-'”.,) =F(ﬂf + HT}—F = {26?]

where p is the mass density.
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Fig. 2,12 The polarization E s
drifl

The physical reason for the polarization current is simple (Fig. 2.12). Consider
an ion at rest in a magnetic field. If a field E is suddenly applied, the first thing the
ton does is to move in the direction of E. Only after picking up a velocily v does the
ion feel a Lorentz force ev x B and begin to move downward in Fig. (2.12). If
E 1s now kept constant, there is no further Vo drift but only a v drifi. However,
if E is reversed, there is again a momentary dnfi, this ime 10 the lefit. Thus v, is a
startup drift due to inertia and occurs only in the first half-cycle of each gyration
during which E changes. Consequently, v, goes to zero with a/a,.

The polanzation effect in a plasma is similar to that in a solid dielectric, where
D = gE + P. The dipoles in a plasma are ions and electrons separated by a distance
rr. But since ions and electrons can move around to preserve quasineuntrality, the
application of a steady E field does not result in a polarization field P. However, if
E oscillates, an oscillating current j, results from the lag due 10 the ion inertia,

2.6 Time-Varying B Field

Finally, we allow the magnetic field to vary in time. Since the Lorentz force is
always perpendicular to v, a magnetic field itsell cannot impan energy 10 a charged
particle. However, associated with B is an electric field given by

VxE=-B (2.68)
and this can accelerate the particles. We can no longer assume the fields 1o be
completely uniform. Let v, =dl/drbe the transverse velocity, 1 being the element of

path along a particle trajectory (with vy neglected). Taking the scalar product of the
equation of motion (2.8) with v, , we have

dn . dl
—(1nn-~ ) —gE.v, —gE.- = (2.69)
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The change in one gyration is obtained by integrating over one period:
2r fu,

ﬁ(% Hﬂ'i) = l“ gE -%dr

If the field changes slowly, we can replace the time integral by a line integral over
the unperturbed orbit:

5(3m) = {qE cdl = qL{‘FxE} - dS

(2.70)
= - J B.dS
5
Here § is the surface enclosed by the Larmor orbit and has a direction given by the
right-hand rule when the fingers point in the direction of v. Since the plasma is
diamagnetic, we have B-dS <0 for ions and >0 for electrons. Then Eq. (2.70)
becomes

_
EPTAN AN (2.71)

:‘EGHHi) = :tqﬂ:tri = :I:qj'[B

The quantity 2B Jw. = B/f_ is just the change 5B during one period of gyration.
Thus

-y
Cad

5(_]—.}11“_) = udB (2.72)

Since the left-hand side is 8(uB), we have the desired result
o =10 (2.73)

The magnetic moment is invariant in stowly varying magnetic fields.

As the B field vanes in strength, the Larmor orbits expand and contruct, and the
particles lose and gain transverse energy. This exchange of energy between the
particles and the field is described very simply by Eq. (2.73). The invariance of j
allows us to prove easily the following well-known theorem:

The magnetic flux through a Larmor orbit is constant.

The flux 15 given by B5, with § = er Thus

+ 5 -
v viom= 2am e 2am
=Brt—= L=y (2.74)

@ =8Br — =
B ¢ B q-

B
L L

Therefore, @ is constant if g is constant.

This property is used in a method ol plasma heating known as adiabatic
compression. Figure 2.13 shows a schematic of how this is done. A plasma is
injected into the region between the mirrors A and B. Coils A and B are then pulsed
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Flg. 2.13 Twoestage adiabatic compression of a plasma

to increase B and hence 1*1. The heated plasma can then be transferred 1o the region
C-D by a further pulse in A, increasing the mirror ratio there. The coils C and D are
then pulsed to further compress and heat the plasma. Early magnetic mirror fusion
devices employed this type of heating. Adiabatic compression has also been used
successfully on toroidal plasmas and is an essenlial element of laser-driven fusion
schemes using either magnetic or inertial confinement.

2,7 Summary of Guiding Center Drifts

Nommiform E :

Nonuniform B field

Grad = B drift :

Curvature drift :

General force F:

Electric field :

Gravitational field -

IFxB

YVy==—
=R

~_ExB
V= HE

(2.17)

(2.15)

(2.18)

(2.59)

(2.24)

(2.26)
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my . 2y R.xB
Cuirved vacuum field 1 vg+ vog = —(1-]'[ + %‘.‘1) —_— (2.30)
] - RZft-
1 dE
Polarization drift : Vy,=t—— 2.66
olarization drif] p T (2.66)

2.8 Adiabatic Invariants

It is well known in classical mechanics that whenever a system has a periodic
molion, the action integral i\pdq taken over a period is a constant of the motion.

Here p and g are the generalized momentum and coordinate which repeat them-
selves in the motion. If a slow change is made in the system, so thal the motion is
not quite periodic, the constant of the motion does not change and is then called an
adiahatic invariant. By slow here we mean slow compared with the peried of

molion, so that the integral } pdqis well defined even though it is strictly no longer

an integral over a closed path. Adiabatic invariants play an imporant role in plasma
physics: they allow us to obtain simple answers in many instances involving
complicated motions. There are three adiabatic invariants, each corresponding to
a different type of periodic motion.

2.8.1 The First Adiabatic Invariant, p

We have already met the guantity
p=m" [2B

and have proved its invanance in spatially and temporally varying B fields. The
periodic motion involved, of course, is the Larmor gyration. If we lake p 1o be
angular momentum mv,r and dg to be the coordinate @, the action integral
becomes

% pdg = %murLdﬂ = 2xrLmvy = 21 =4 ?y (2.75)
Thus g is a constant of the motion as long as g/m is not changed. We have proved
the invarance of g only with the implicit assumplion w/fw, < 1, where @ is a
frequency charactenzing the rate of change of B as seen by the panicle. A proof
exists, however, that g is invanant even when @ < w. In theorists’ language, y is
invariant “to aff orders in an expansion in /fw:.” What this means in practice is that
g remains much more nearly constant than B does during one period of gyration.
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