

Chapter

PHYSICAL OPTICS

KEY POINTS

Wavefront:

A surface passing through all the points undergoing a similar disturbance (i.e., having the same phase) at a given instant is called a wave front.

Spherical wave front:

When the disturbance is propagated out in all directions from a point source, the wavefronts in this case are spherical.

Plane wave front:

A small part of spherical or cylindrical wave front at very large distance from source of light

Rays: Radial lines leaving the point source in all directions are called rays. It represent the direction of propagation of light.

Wavelength:

.The distance between two consecutive wavefronts is called wavelength.

Huygen's Principle:

- Huygen's principle is that all the points on a primary wave front can be considered as the source for the production of secondary wavelets.
- Position of new wave front of all secondary wavelets is tangent envelope to all of them.
- There is an infinite number of wave fronts possible.

Interference:

When two or more waves overlap each other there is a resultant wave. This phenomenon is called interference.

Conditions for interference of light:

- Monochromatic (Having single wave length) **(1)**
- Coherence (Having constant phase difference) **(2)**

Constructive Interference:

When two waves, traveling in the same medium overlap and the amplitude of the resultant wave is greater than either of individual waves, it is called constructive interference.

Destructive Interference:

In case of destructive interference, the amplitude of the resulting wave is less than either of the individual waves.

Young's Double Slit Experiment:

- In Young's double slit experiment.
- For bright fringe, path difference is $d Sin\theta = m\lambda$ į.
- For dark fringe, $dSin\theta = \left(m + \frac{1}{2}\right)\lambda$ ii.
- The distance between two adjacent bright or dark fringes. iii.

$$\Delta y = \frac{\lambda}{d}$$

Newton's Rings:

Newton's rings are circular fringes formed due to interference in a thin air film enclosed between a convex lens and a flat glass plate.

Apparatus for Newton's Ring:

- (1) Extended source of monochromatic light
- (2) Semi silvered glass plate (beam splitter)
- (3) Plano convex lens of large focal length
- (4) Flat glass plate
- (5) Microscope

Interference In Different Types Of The Films:

Thin film of refracting medium having thickness comparable to the wavelength of light rays e.g.

- (1) Oil film on water
- (2) Soap film
- (3) Air film

Michelson's Interferometer:

- Michelson's interferometer is an instrument that is capable of measuring distance with extremely high precision.
- If mirror is moved through distance L, then m fringes pass before eye.

$$L = m\lambda/2$$

Diffraction:

- Bending of light around obstacles is due to diffraction of light.
- For a diffraction gratings.

 nth order maxima: $d \sin \theta$

$$d\sin\theta = n\lambda$$

X-rays Diffraction:

• Diffraction of X-rays by crystals using Bragg's equation $2d \sin \theta = n\lambda$ where n is the order of reflection

Polarization:

Polarization of light proves that light consists of transverse electromagnetic waves.

Diffraction Grating:

- Diffraction grating is a multi-slit arrangement of parallel and equally spaced slits.
- Distance between two slits is called grating element.

$$d = 1/N$$

- where 'N' is the number of lines in one unit length.
- Grating equation is given as

$$d \sin \theta = m\lambda$$

where 'm' is called the order of diffraction pattern

TOPICAL MULTIPLE CHOICE QUESTIONS

Topic 9.1:

(1)	V	Vavefronts -				
(1)	I ne wave nature of light was proposed by					
	(") I TO WIOII	(b) Joule	•			
(2)	(c) Maxwell	(dY Huygen				
(2)	Electromagnetic wave nature of l	ight was proposed by				
	(a) HellZ	(b) Maxwell				
	(c) Einstein	(d) Huygen				
(3)	Small segments of a large spheric	al wavefronts approximately	y			
	(a) a circular wavefront	(b) cylindrical wave	Hour			
	(o) plana waya furus	(4) anharical wavefr	ont			
(4)	Such a surface on which all the po	oints have the same phase of	vibration is called			
	(a) crest	(b) trough				
	(c) wavelength	(A) sugar a front	at the is called			
(5)	A line normal to the wavefront, sho	owing the direction of propaga	ation of light is called			
	(a) beam of light	Contay of figure				
	(c) both a and b	(d) none of these				
(6)	To convert spherical wavefronts in	nto plane wavefronts				
` '	(a) a concave lens is placed in front	of source				
	(b) a convex lens is placed in front (of source				
	(c) source is placed at the principle f	focus of convex lens				
	(d) all of these	t shamgo wit	h the nature of medium			
(7)	(d) all of these Which one of the following propertion	es of light does not change wit	If the intuit of inculum			
,(.)	(a) velocity	(D) 1141 C				
	(c) amplitude	~(d) frequency				
(8)	Blue colour of the sky is due to	(b) contaring				
(0)	(a) dispersion	(b) scattering (d) polarization				
	· · · · · · · · · · · · · · · · · · ·	(d) polarization	proved wave nature			
(9)	Young's experiment performed for	or the first time in	_			
()	of light	(b) 1801				
	(a) 1981	(d) 1678				
	1765					
(10)	Wave nature of light is conformed	(b) Interference				
(20)	(a) Polarization	(d) All of these				
	(c) Diffraction					
(11)	Light reaches the earth in the form	(b) plane wavefront				
1	(a) spherical wavelloll	(d) none of these				
	(c) both A and B					
(12)	A source of light "S" is shown in the	ar source				
	(a) spherical wavefrom are present ne	ar source Iarga dictance from course	S			
	(b) plane wavefront will be formed at					
	(c) rays are parallel only in case of pla (d) all of these	me wavenoms				
	(a) an or mese					

Topic 9.2:

Huygen's Principle

Huygen's principle enables us to determine the (13)

(a) frequency and wavelength of new wavefront (b) shape and location of new wavefront (c) amplitude and location of new wavefront

(d) shape and size of new wavefront According to Huygen's principle, every point of a wavefront may be considered as a (14)

(a) primary wavelets

(b) secondary wavelets

(c) source wavelets

(d) none of these

According to Huygen's principle, the new wavefront at time $t + \Delta t$ is a (15)

(a) secant envelope to all secondary wavelets (b) tangent envelope to all secondary wavelets (c) tangent envelope to all primary wavelets (d) secant envelope to all primary wavelets

The phase difference between two successive wave front of light is (16)

(a) $\frac{\pi}{2}$

(17)

(d) zero The electromagnetic wave theory was proposed by

(a) Hertz

(b) Maxwell

(c) Einstein

(d) Huygen

The distance traveled by the light between primary wavefront to a secondary (18)wavefront is given by

(a) $\frac{c}{\Delta t}$

(b) c Δt

(19)Wavelet of light moves in

(a) Backward direction

(c) All directions

(h) Forward direction

(d) Any direction

Topic 9.3:

Interference of Light Waves

(20)The sources are said to be coherent if they have

(a) constant phase difference

(b) yery less distance apart

(c) monochromatic

(d) both a & c

(21)Can two head light of a car produce interference

(a) yes

(c) partially produce

(d) both a & c

Two lamps of same colour are place close to each other. The light coming from both (22)the lamps reach a screen where no interference pattern is observed. Why is it so?

(a) beams of light are not monochromatic

(b) beams of light does not have same frequency

(c) beams does not have same speed

beams are not coherent means a constant phase difference

	(23)	F == == == == == == == == == == == == ==	on of interference
		(a) light should be monochi	
	(2. 4)	(c) the sources should close	to each other (d) all of these
	(24)	If two light waves are not co	herent then which of the phenomenon cannot be take place
		(a) diffraction	(b) interference
	(25)	(c) polarization	(d) all of these
	(25)	The two different flashlight	s will not produce an interference pattern, because
		(a) light beams are not comi	ng from the coherent sources
		(b) light beams are coming f	rom the coherent sources
		(d) light beams are not coming	ng from the transmitted light sources
(26)	If the ways interference to	rom the transmitted light sources ctively then the amplitude of the resultant wave will be
•	-	(a) greater then either of indi	vidual wave (b) Less then either of individual wave
		(c) equal to either of individu	
C	27)	A screen is illuminated by	white light coming from the two sources. One can
	- ' /	observe interference because	e
		(a) beams are not monochron	
		(b) as sources are different ph	
		(c) beams are coherent	
		(d) both A and B	
Ta	pie 9		
			's Double Slit Experiment
(28	B) I	n Young's double slit exper	ment, the distance between two adjacent bright or dark
•		ringes	
			(b) $\frac{d\lambda}{\lambda}$
		a) $\frac{d}{L\lambda}$	
	- (0	$\frac{dL}{d}$	(b) $\frac{d\lambda}{L}$ (d) $\frac{L\lambda}{d}$
(29)	T	he process which was/were	aking place in YDSE is/are
(->)) interference	(b) diffraction
		both A and B	(d) none of these
(30)	In	Young's double slit experime	nt, fringe spacing will be maximum if we use
(50)		yellow light	(b) red light
		green light	(d) blue light
(31)	` '	axima is termed as	
(31)		bright fringe	(b) monochromatic light
	. ,	white light	(d) dark fringe
(32)			pacing, when the experiment is performed in water
		ead of air	
		enlarge	(b) shrink
	` '	lisappear	(d) no effect
33)			tive interference of two coherent beams is obtained,
33)		oath difference will be	tive interference of two concrete sources
		ntegral multiple of $\frac{\lambda}{2}$	(b) integral multiple of λ
	(c) ev	ven integral multiple of λ	(d) odd integral multiple of $\frac{\lambda}{2}$

A YDSE arrangement is shown in the figure in which one of the slits is covered with a cellophane paper. What happens to the intensity of dark & bright fringes on

- (a) intensity of both decreases
- (b) intensity of both increases
- (c) brighter becomes less bright but dark becomes less dark

In Young's double slit experiment, the condition for bright fringe is expressed as (35)

(a)
$$d\sin\theta = \left(m - \frac{1}{2}\right)\lambda$$

(b)
$$d \sin \theta = \left(m + \frac{1}{2}\right) \lambda$$

(c) $2d\sin\theta = m\lambda$

(d) $d \sin \theta = m\lambda$

- Two interfering beams have intensities as 91 and 41. What will be the ratio at (36)corresponding intensities of constructive and destructive interference?
 - (a) 3:2

(b) 5:1

(c) 25:1

- 4d711:2
- In Young's double slit experiment, if the distance between the slits and screen is halved (37)and the distance between the slits is doubled then the fringe spacing is
 - (a) half

(b) double

(c) four times

- (d) one fourth
- In young's double slit experiment if blue light is used instead of red light then fringe (38)spacing.
 - (a) increases

(b) decreases

(c) remain same

(d) none of these

Topic 9.5:

Interference in Thin Films

The speed of light in vacuum depends upon the (39)

(a) frequency

(b) wavelength

(c) nature of the medium

(d) none of these

(40)The colours appears in the thin films is due to the

(a) interference

(b) dispersion

(c) polarization

(d) scattering

(41)The sky during sunset seems red due to

(a) scattering

(b) dispersion

(c) polarization

(d) interference

(42)In interference of thin films the path difference depends upon the

(a) angle of incidence

(b) angle of reflection

(c) angle of deviation

(d) angle of refraction

(43)Whenever light changes its medium the quantity remains same is

(a) speed

(b) wavelength

(c) frequency

(d) all of these

	3 . 0	Physical Optic
١	hapter- 9	issed though the prism, the light (b) deviate
(4-	ti Whenever the white light pa	(b) deviate
(4-	dispersed	(d) interfere
	(c) polarized	wet footpath shows colour due to
(45) An oil film spreading over a	(b) Diffraction of light waves
	(a) dispersion of fight waves	(d) polarization
	(a) dispersion of light waves	om rare medium to denser medium its wavelength
(46)	When a ray of light enters to	Hr decreases
•	(a) increases	(d) none
	(c) remain same	(a) name
Top	ic 9.6:	Newton's Ring
	Land to place	d on the glass slab the way as shown in the figure. If the
(47)	A Plano-convex tens is prace	of contact "P". Then what is true?
	light is transmitted at point of	of contact 1. Then what is true
	*	* * * * *
		P
	, .	
	(a) centre becomes bright	(b) no phase change occurs
	(c) centre remains dark	Hoboth A and B
105	In Nancton's Ding at the r	point of contact of the lens and the glass plate, the
48)	thickness of the film is	omit of contact
		(b) very thin
	(a) very large	(d) continually changes
	(c) almost zero	
(9)	Newton's rings are formed du	(b) Interference
	(a) Diffraction	
-	(c) Polarization	(d) Dispersion
	The path difference $\frac{\lambda}{2}$ means t	ha phase change of
())	The path difference ameans t	ne phase change of
	(a) 90°	(b) 60°
	(a) 30 (c) 180°	(d) 45°
•	(2) 1801	reflected back at point of contact then centre becomes
		(b) bright
	(a) dark	(d) no interference is observed
(e) may be bright or dark	(d) no interference is observed
pic 9	27:	
	Miche	elson Interferometer
2) (1	dichelson measured the length	of standard meter in terms of wavelength of
	a) sodium light	4h) red cadmium light
	c) platinum light	(d)cesium light
e V	Chiab instance is used to vis	w the fringes in Michelson interferometer

(53)

(a) compound microscope

(b) interferometer (d) telescope

(c) spectrometer

Michelson's formula for the displacement L is (54)

 $(a) L = m\frac{\lambda}{2}$

(b) 2L

(c) $L = 2m\lambda$

2m(d) 21 -

Physical Optics Michelson's interferometer can also be used to find the (55) (a) wavelength of light (b) frequency of light (c) velocity of light (d) velocity of sound Michelson's interferometer was devised in (56)(a) 1864 **(b)** 1687 (e) 1881 (d) 1786 In a Michelson interferometer by moving the mirror through a distance of $\frac{2}{4}$, the (57) path difference changes by $\sim (15)^{1/2}$ (c) h Michelson shows that the standard meter was equivalent to (58)wavelength of red cadmium light (a) 15553163.5 **(b)** 16553153.5 (c) 1653163.5 W1553163.5 Michelson's Interferometer is an instrument that can be used to measure (59)(a) distance with extremely low precision (b) distance with extremely high precision (c) both a and b (d) none Topic 9.8 & 9.9: Diffraction of Light & Diffraction Due to Narrow Slit A sphere is placed in front of the light source as shown in the figure. The light then (60)falls on a screen. The centre of screen is bright due to Sphere Shadow (b) dispersion (a) interference (d) diffraction (c) scattering Diffraction is a characteristics of (61)(It) wave (a) particle (d) none of these (c) both a and b We can't see through the corners yet can hear. This is due to (62)(b) smaller wavelength of light (a) greater wavelength of sound (d) all of these (c) diffraction of sound (63)Diffraction is a property of HAP wave (a) interference (d) polarization (c) reflection In diffraction the phenomenon is found to be prominent when the wavelength of (64)

(b) size of the slit

(d) all of these

light is large as compared with the

(a) aperture of the slit

(c) number of the slits

Chapter- 9

(65	5) In diffraction pattern due to narr	row slits the equation for the first minimum is λ
	(a) $\frac{d}{-}\sin\theta = \lambda$	(b) $\frac{d}{2}\sin\theta = \frac{\lambda}{2}$
	2	1 2
	(a) $\frac{d}{2}\sin\theta = \lambda$ (c) $d\sin\theta = \frac{\lambda}{2}$	(b) $\frac{d}{2}\sin\theta = \frac{\lambda}{2}$ (d) $\frac{d}{2}\sin\theta = \frac{2}{3}\lambda$
(66)	When the light passes through	the pinhole opening, then the spreading of light is
	due to	
	(a) interference	(b) diffraction
	(c) polarization	(d) scattering
(67)	Which of the following waves car	n be diffracted
	(a) sound waves	(b) light waves
	(c) water waves	(d) all of these
Top	ic 9.10:	
	Diffi	raction Grating
(68)	The optical instrument with a re	egular pattern, which splits light into several beams
	is called	
	(a) slit	(b) pinhole camera
	(c) grating	(d) grating element
(69)	The distance between two adjace	nt lines or slits is called
	(a) slit	(b) grating
(- 0)	(c) grating element	(d) narrow slit
(70)	A typical diffraction grating has	(b) 400 to 5000 lines per centimeter
	(a) 400 to 5000 lines per meter	2 to a continue man millimator
(57.4)	(c) 400 to 5000 lines per cubic meter	
(71)	The relation of grating element ca	in de expressed as
	(a) $d = \frac{length of \ grating \ element}{distance \ between the \ slits}$	
	distance between the slits	
	(b) $d = \frac{length of grating element}{dt}$	
	$\frac{1}{number\ of\ lines\ rules\ on\ it}$	
	(c) $d = \frac{number\ of\ lines\ ruled\ on\ it}{length\ of\ grating\ element}$	
	(d) $d = (length of grating element) \times$	
72)	On a compact disc the width of each	
	(a) 0.5mm	(b) 0.5cm
	(c) 0.5 µm	(d) 0.5 dm
73)	When $\theta = 0$, along the direction	of normal to the grating, the path difference
	between the rays coming out from	the slits of grating will be
	(a) mi <mark>ni</mark> mum	(b) maximum
:	(e) zero	(d) none of these
_	• •	es per mm. Its grating element will be
	(a) $1 \times 10^{-3} cm$	(b) $1 \times 10^{-5} cm$
	(c) $1 \times 10^{-5} mm$	$4 \text{d} \cdot 1 \times 10^{-4} \text{cm}$
	1	erence for constructive interference should be
(a) $\frac{\lambda}{}$	(b) $\frac{\lambda}{\lambda}$
	2	$\frac{60}{4}$
	a) $\frac{\lambda}{2}$	(b) $\frac{\lambda}{4}$ (d) $\frac{\lambda}{8}$
الإ	The second secon	(d) $\frac{1}{9}$
		Y

=	A diffraction grating used to make	Physical Optical diffraction pattern for yellow light and then for that for yellow light and then for that for yellow light and then for that for yellow light and then yellow light and ye
(7	red light. The distance between the	diffraction pattern for volley use
	(a) less than	spots will be that for
	Licoppear	greater than that for yellow light.
(7'	7) To get more orders of spectra using a	diffracti
(/	(a) decrease	(d) no change diffraction grating, the wavelength should be (b) increase
	(c) remain same	(b) increase
(78	To get orders of spectra using a diffi	(d) none of these⊕ raction grating, we can use the relation
((a) $n = \frac{\sin \theta}{\lambda}$	grating, we can use the relation
	λ	(b) $n = \frac{\sin \theta}{\lambda}$
	(c) $n = \frac{\sin \theta}{d\lambda}$	λ
		$(\mathbf{d})' n = \frac{d \sin \theta}{\lambda}$
To	nic 9.11:	λ
	Diffraction of	X-rays by Crystals
(79)	X-rays is a type of electromagnetic radi	A-rays by Crystals ation of much shorter wavelength of the order of
()	(a) 10 ⁻¹⁰ m	(b) 10 ⁻¹⁹ m
	(c) 10^{-20} m	(d) 10^{-12} m
(80)	Bragg's equation is expressed as	(d) 10 III
, .	(a) $\frac{d}{2} \sin \theta = n\lambda$	
	$\frac{(a)}{2} = \sin \theta - \ln \lambda$	(b) d Sin $\theta = n\lambda$
	() At a:)
	(c) $2d \sin \theta = n\lambda$	(d) 2d Sin $\theta = \frac{n\lambda}{2}$
(81)	The study of atomic structure of crys	
(01)	(a) 1914	(b) 1901
	(c) 1811	(d) 1931
(82)	Diffraction of x-rays by crystal show	
(02)	(a) the intensity of light is high	(b) x-ray has shorter wavelength
	(c) x-rays has greater frequency	(d) both b & c
(83)	X-rays are very useful in determine t	
(00)	(a) hemoglobin	(b) double helix structure of DNA
	(e) Both a & b	(d) pulse rate
(84)	Which colour suffers the maximum d	
(0.)	(a) yellow	(b) blue
	(c) orange	(d) green
(85)	Diffraction effects were discovered in	
()	(a) 1901	(b) 1801
	(c) 1918	(d) 1810
Conic	9.12:	
		<u>rization</u>
86)	The phenomenon of polarization is do	
/	(a) selective absorption	(b) refraction through crystals
	• .	(d) all of these
87)	(c) scattering through particles Polarizer are made by special substant	• •
y diam	(a) Aighraig autotage as	(b) super conductor
	(a) dichroic substances	(d) none of these
	(c) organic substances	(4)

	whapter >	1 mj stati Optica
= (8	Which one of the following	es that light waves are transverse in nature
	(a) interference	(b) diffraction
	(a) polarization	(d) reflection
(8)		iit
	(a) refraction	(b) reflection
	(c) diffraction	(d) polarization
(90		e of vibration is called
	(a) interference	(b)diffraction
	(c) dispersion	(d) polarization
(91)	The plane of polarization is rotate	d many degrees when thickness of such crystals is
	(a) i mm	(D) less than 1 miles
	(a) few mm	(d) order of 1 Λ^0 How its intent
(92)	Light passes through Polaroid-	and its intensity becomes "I". How its intensity
	varies when this light passes	s through Polaroid-2
	oriented at 0=45°	
	1	
	(a) $\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
		(b) $\frac{1}{2}$ (d) $\frac{1}{8}$ Polaroid-1
	$(c) \frac{1}{c}$	(d) $\frac{1}{8}$ Polaroid-1
(3)	The organic substance which sho	w optical rotation when they are in solution
	(a) tartaric acid	(b) Sugar
	(c) alcohol	(4) hoth a & b
4)	Light glare can be reduce by usin	g to includes
	(a) polaroid	(b) un-polarized glass
	(c) both a & b	(d) analyzer
·):	Glare produces when light reflect	ts from water snow and rough road surfaces when
1	their angle of incidence is	
	(a) small	(4n) large
	(c) very large	(d) none of these.
`	Light reflected from smooth surfa	
)	inght reflected from smooth surface	(b) parallel to the surface
	(a) perpendicular to the surface	(d) in opposite direction to the surface
	(c) along the surface	
)	The frequency of excitation when	a Polaroid is given a complete rotation. Placed in
	front of plane polarized light rotat	led with a frequency "f" is
	(a) f	(b) 2 f
		(d) $\frac{f}{2}$
	(c) 4/	(d) $\frac{1}{2}$
	Commercially polarizing material	is called
	(a) glass	-(b) polaroid
	(c) analyzer	(d) prism
		of light produced at a road surface.
	a) increases glare	(b) decreases glare
(c) no glare	(d) very intense glare

MULTIPLE CHOICE QUESTIONS

(From Past Paners 2012-2017)

	(F)	rom Past Papers 2012-2017)					
(1)	In case of X-ray diffracti	(Federal Board) on by crystal the wavelength can be for	ound be				
		dy degree one was energen can be jo	outly by using the				
	(a) d sin $\theta = n\lambda$	(b) $2d \sin\theta = n\lambda$	(FDR 2012)				
(2)	(c) $2d\cos\theta = n\lambda$	(d) $d \cos \theta = n\lambda$					
(2)	In a diffraction grating, dis	stance between the two adjacent slits in o	eallad				
			(FDR 2013)				
	(a) Grating element	(b) Normal to grating	(FDR 2013)				
2)	(c) Fringes	(d) Diffraction					
(3)	10 determine the inter plan	To determine the inter planer space, equation used is					
	(a) $d \sin \theta = n\lambda$	(b) $2d \sin\theta = n\lambda$	(FDR 2013)				
	$(\mathbf{c})\frac{\mathrm{d}\sin\theta}{2}=\mathrm{n}\lambda$						
		$(\mathbf{d}) \sin \theta = n\lambda$					
4) ,	Colors seen on oily water su	rface are due to the	(EDD 2014)				
	(a) interference of light	(b) Diffraction of light	(FDR 2014)				
	(c) Polarization	(d) Pofraction C1: 1					
5)	The technique used to study	the structure of hemoglobin is	(FDR 2014)				
	(a) A-lays unhaction	(b) Newton's rings	(I DK 2014)				
3	(c) Polarization	(d) Interface					
6)	of light proves	s that light consists of transverse electrom	agnetic waves				
			(FDR 2015)				
	(a) interference	(b) diffraction					
	(e) polarization	(d) dispersion					

(d) dispersion

ANSWER KEYS

(Topical Multiple Choice Questions)

- \	97.	1	1 2 2 1	upic	CII	vice	ŲШ	estio	ns)
	d	21	d	41	8	61	b	81	а
2	b	22	d	42	a	62	d	82	b
3	C	23	d	43	c	63	b	83	C
4	d	24	b	44	a	64	a	84	
5	b	25	a	45	C	65	b	85	b
6	c	26	a	46	b	66	b		b
7	d	27	d	47	d	67		86	d
8	b	28	d	48	c	68	d	87	a
90	b	29	c	49	b		C	88	c
10	d	30	b	50		69	c	89	d
11	b	31		The same of the sa	C	70	b	90	d
12		-	<u>a</u>	51	a	71-	<u>b</u> _	91	C
	d	32	b	52	b	72	_c	92	b
13	<u>b</u>	33	b	53	d	73	c	93	ď ;
14	<u>_b_</u>	34	C	54	a	74	d	94	a
15	b	35	d	55	a	75	C	95	b
16	C	36	d	56	c	76	b	96	3
17	b	37	d	57	b	77	a	97	b
18	b	38	b	58	d	78	d	98	b
19	b	39	d	59	b	79	a	99	b
20	d	40	a	60	d	80	C		A.5 1

SHORT QUESTIONS

(From Textbook Exercise)

Under what conditions two or more sources of light behave as coherent sources? 9.1.

Two or more sources are said to be coherent if light coming from these sources have Ans: same frequency and have constant phase difference.

How is the distance between interface fringes affected by the separation between the 9.2. slits of Young's experiment? Can fringes disappear?

We know that fringe width is given by Ans:

$$\Delta v = \frac{L\lambda}{d}$$

Where "d" separation between slits. Therefore $\Delta y \propto \frac{1}{d}$. This relation shows that if

separation between the slits increases then fringe width decreases. If separation between slits is very large then the fringes may disappear.

Can visible light produce interference fringes? Explain. 9.3.

Yes, visible light can produce interference. If white light is used for interference then we can see colours on both side of central maxima on Ans: the screen. But the pattern will not be well defined due to overlapping of colours.

In the Young's experiment, one of the slits is covered with blue filter and other with 9.4. red filter. What would be the pattern of light intensity on the screen?

Blue filter gives blue light and red filter gives red light. For interference the two waves must have same frequency. As in the case one light is red and the other is blue therefore Ans: no interference will take place. We shall observe two Coloured images on the screen with constant intensity.

Explain whether the Young's experiment is an experiment for studying interference 9.5. or diffraction effects of light.

Young's experiment is an experiment for study the interference of light although light also diffracts while pass through the slits. But interference phenomenon is more Ans: prominent then diffraction phenomenon.

An oil film spreading over a wet footpath shows colours. Explain how does it happen? 9.6.

If white light is incident on a film, of irregular thickness at all possible angles, we should Ans: consider the interference pattern due to each spectral colour separated. It is quite possible that at a certain place on the film. Its thickness and the angle of incidence of light are such that the condition of destructive interference of one colour is being satisfied. Hence that pattern of the film will show the remaining constituent colour of the white light due to constructive interference.

- Could you obtain Newton's rings with transmitted light? If yes, would the pattern be 9.7. different from the obtained with reflected light?
- We can obtain Newton's ring with transmitted light but the pattern will be exactly opposite Ans: from that obtained with reflected light. In case of reflected light the central spot appears dark and in the case of transmitted light central spot appears white

Ans:

In the white light spectrum obtained with a diffraction grating, the third order image of In the white light of the fourth order image of a second wavelength. Calculate

For first wavelength

For second cave length $d \sin \theta = 4\lambda$ As the two orders coincides therefore

$$3\lambda_1 = 4\lambda_2$$

$$\frac{2}{\lambda} = \frac{4}{3}$$

Thus ratio is

$$\Rightarrow 4:3$$

How would you manage to get more orders of spectra using a diffraction grating? 9.9. Ans:

$$d\sin\theta = m\lambda$$

$$m = \frac{d \sin \theta}{\lambda}$$

Where 'm' is order of diffraction.

1) This shows that order of spectra can be increased by increasing the valued d (grating element) As $d = \frac{1}{M}$. Therefore, d can be increased by decreasing number of lines (N) on the grating.

2) Using the light of shorter wavelength.

Why the Polaroid sunglasses are better than ordinary sunglasses? 9.10.

Polaroid sunglasses are better then ordinary sun glasses because they reduce the glare of light Ans: through reflected from water glass, snow and rough road is partially polarized and produces glare. therefore the glare is reduced by the polaroid.

How would you distinguish between unpolarized and plan polarized lights? 9.11.

Ordinary light (unpolarized light) has a number of planes of vibrations on the other hand in Ans: polarized light, vibration are confined in one plane only. The unpolarized and polarized light can be distinguished by using a polarized light, the light would be stopped at some particular orientation

Sketch out three differences between interference and diffraction of light.(FDR 2017) (29)Ans:

DIFFERENCE BAY INTERFE	CRENCE AND DIFFRACTION DIFFRACTION
INTERFERENCE	the result of interaction
to the result	of waves coming ingitial
interaction of waves coming from two wavefronts.	of same wavefront. 2. Diffraction maxima are not of same
	2. Diffraction maximum width and brightness.3. Diffraction minima are not perfectly
is attended infilling are periody	dark.

Slate Huygens's principle. Also distinguish between a wave-fr (FDR 2017) (30)graphical sketch. (Graph paper is not required)

Huygen's principle enables us to determine the shape and location of the new wavefront at a later time $t+\Delta t$. This principle consists of two Ans:

Every point of a wavefront may be considered as a source of secondary wavelets which spread out in forward direction with a speed equal to the speed of propagation of the wave.

The new position of the wavefront after a certain interval of time can be found by constructing a surface touches all the secondary wavelets.

(From past papers 2012-2017) (Federal Board)

An oil film spreading over a wet footpath shows colours. Explain how it happens. V (1) (FDR 2012)

In "Newton's rings" at the point of contact of the lens and the glass plate, the spot is dark. (2) (FDR 2012) Why?

What are the coherent sources of light? (3)

In a double slit experiment the second order maximum occurs at θ =0.25°. The (4) (FDR 2014) wavelength is 650 nm. Determine the slit separation.

Why are natural crystal used for X-ray diffraction instead of diffraction grating? (FDR 2015) **(5)** (FDR 2015)

State Huygens's principle. Also draw figure. (6)

An oil film spreading over a wet footpath show colors. Briefly describe how it does (7) (FDR 2015) happen?

How is the distance between the interference fringes affected by the separation between (8)(FDR 2016) the slits of Young's arrangement? Can interference fringes disappear?

In the Young's slit arrangement, one of the slits is covered with blue filter and other with red (9) (FDR 2016) filter. What would be the pattern of light intensity on the screen? Explain.

(FDR 2017) Sketch out three differences between interference and diffraction of light. (10)

Slate Huygens's principle. Also distinguish between a wave-front and a wavelet by (11)(FDR 2017) graphical sketch. (Graph paper is not required)

(FDR 2014)